Eigenvalues and simplicity of interval exchange transformations

Sébastien Ferenczi; Luca Q. Zamboni

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 3, page 361-392
  • ISSN: 0012-9593

Abstract

top
For a class of d -interval exchange transformations, which we call the symmetric class, we define a new self-dual induction process in which the system is successively induced on a union of sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first nontrivial examples with eigenvalues (rational or irrational), the first ever example of an exchange on more than three intervals satisfying Veech’s simplicity (though this weakening of the notion of minimal self-joinings was designed in 1982 to be satisfied by interval exchange transformations), and an unexpected example which is non uniquely ergodic, weakly mixing for one invariant ergodic measure but has rational eigenvalues for the other invariant ergodic measure.

How to cite

top

Ferenczi, Sébastien, and Zamboni, Luca Q.. "Eigenvalues and simplicity of interval exchange transformations." Annales scientifiques de l'École Normale Supérieure 44.3 (2011): 361-392. <http://eudml.org/doc/272107>.

@article{Ferenczi2011,
abstract = {For a class of $d$-interval exchange transformations, which we call the symmetric class, we define a new self-dual induction process in which the system is successively induced on a union of sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first nontrivial examples with eigenvalues (rational or irrational), the first ever example of an exchange on more than three intervals satisfying Veech’s simplicity (though this weakening of the notion of minimal self-joinings was designed in 1982 to be satisfied by interval exchange transformations), and an unexpected example which is non uniquely ergodic, weakly mixing for one invariant ergodic measure but has rational eigenvalues for the other invariant ergodic measure.},
author = {Ferenczi, Sébastien, Zamboni, Luca Q.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {interval exchanges; self-dual induction; eigenvalues; Veech simplicity},
language = {eng},
number = {3},
pages = {361-392},
publisher = {Société mathématique de France},
title = {Eigenvalues and simplicity of interval exchange transformations},
url = {http://eudml.org/doc/272107},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Ferenczi, Sébastien
AU - Zamboni, Luca Q.
TI - Eigenvalues and simplicity of interval exchange transformations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 3
SP - 361
EP - 392
AB - For a class of $d$-interval exchange transformations, which we call the symmetric class, we define a new self-dual induction process in which the system is successively induced on a union of sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first nontrivial examples with eigenvalues (rational or irrational), the first ever example of an exchange on more than three intervals satisfying Veech’s simplicity (though this weakening of the notion of minimal self-joinings was designed in 1982 to be satisfied by interval exchange transformations), and an unexpected example which is non uniquely ergodic, weakly mixing for one invariant ergodic measure but has rational eigenvalues for the other invariant ergodic measure.
LA - eng
KW - interval exchanges; self-dual induction; eigenvalues; Veech simplicity
UR - http://eudml.org/doc/272107
ER -

References

top
  1. [1] V. I. Arnolʼd, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk 18 (1963), 91–192, translation: Russian Math. Surveys 18 (1963), 86–194. Zbl0135.42701MR170705
  2. [2] P. Arnoux, Un exemple de semi-conjugaison entre un échange d’intervalles et une translation sur le tore, Bull. Soc. Math. France116 (1988), 489–500. Zbl0703.58045MR1005392
  3. [3] P. Arnoux & G. Rauzy, Représentation géométrique de suites de complexité 2 n + 1 , Bull. Soc. Math. France119 (1991), 199–215. Zbl0789.28011MR1116845
  4. [4] A. Avila & G. Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math.165 (2007), 637–664. Zbl1136.37003MR2299743
  5. [5] M. Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, J. Anal. Math. 44 (1984/85), 77–96. Zbl0602.28008MR801288
  6. [6] M. Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic, Duke Math. J.52 (1985), 723–752. Zbl0602.28009MR808101
  7. [7] J. Cassaigne, S. Ferenczi & A. Messaoudi, Weak mixing and eigenvalues for Arnoux–Rauzy sequences, Ann. Inst. Fourier (Grenoble) 58 (2008), 1983–2005. Zbl1151.37013MR2473626
  8. [8] J. Chaika, There exists a topologically mixing IET, preprint arXiv:0910.3986. 
  9. [9] J. R. Choksi & M. G. Nadkarni, The group of eigenvalues of a rank one transformation, Canad. Math. Bull.38 (1995), 42–54. Zbl0833.28008MR1319899
  10. [10] I. P. Cornfeld, S. V. Fomin & Y. G. Sinaĭ, Ergodic theory, Grund. Math. Wiss. 245, Springer, 1982. Zbl0493.28007MR832433
  11. [11] S. D. Cruz & L. F. C. da Rocha, A generalization of the Gauss map and some classical theorems on continued fractions, Nonlinearity18 (2005), 505–525. Zbl1153.11320MR2122671
  12. [12] S. Ferenczi, Systems of finite rank, Colloq. Math.73 (1997), 35–65. Zbl0883.28014MR1436950
  13. [13] S. Ferenczi, C. Holton & L. Q. Zamboni, Structure of three interval exchange transformations. I. An arithmetic study, Ann. Inst. Fourier (Grenoble) 51 (2001), 861–901. Zbl1029.11036MR1849209
  14. [14] S. Ferenczi, C. Holton & L. Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories, J. Anal. Math. 89 (2003), 239–276. Zbl1130.37324MR1981920
  15. [15] S. Ferenczi, C. Holton & L. Q. Zamboni, Structure of three-interval exchange transformations III. Ergodic and spectral properties, J. Anal. Math. 93 (2004), 103–138. Zbl1094.37005MR2110326
  16. [16] S. Ferenczi, C. Holton & L. Q. Zamboni, Joinings of three-interval exchange transformations, Ergodic Theory Dynam. Systems25 (2005), 483–502. Zbl1076.37002MR2129107
  17. [17] S. Ferenczi & C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory67 (1997), 146–161. Zbl0895.11029MR1486494
  18. [18] S. Ferenczi & L. F. C. da Rocha, A self-dual induction for three-interval exchange transformations, Dyn. Syst.24 (2009), 393–412. Zbl1230.37005
  19. [19] S. Ferenczi & L. Q. Zamboni, Structure of k -interval exchange transformations: induction, trajectories, and distance theorems, J. Anal. Math.112 (2010), 289–328. Zbl1225.37003
  20. [20] H. Hmili, Non topologically weakly mixing interval exchanges, Discrete Contin. Dyn. Syst.27 (2010), 1079–1091. Zbl1195.37025
  21. [21] A. del Junco, A family of counterexamples in ergodic theory, Israel J. Math.44 (1983), 160–188. Zbl0522.28012
  22. [22] A. del Junco & D. J. Rudolph, A rank-one, rigid, simple, prime map, Ergodic Theory Dynam. Systems7 (1987), 229–247. Zbl0634.54020
  23. [23] A. B. Katok, Invariant measures of flows on orientable surfaces, Dokl. Akad. Nauk SSSR211 (1973), 775–778. Zbl0298.28013
  24. [24] A. B. Katok & A. M. Stepin, Approximations in ergodic theory, Uspehi Mat. Nauk 22 (1967), 81–106, translation: Russian Math. Surveys 22 (1967), 76–102. Zbl0172.07202
  25. [25] M. Keane, Interval exchange transformations, Math. Z.141 (1975), 25–31. Zbl0278.28010
  26. [26] M. Keane, Non-ergodic interval exchange transformations, Israel J. Math.26 (1977), 188–196. Zbl0351.28012
  27. [27] A. O. Lopes & L. F. C. da Rocha, Invariant measures for Gauss maps associated with interval exchange maps, Indiana Univ. Math. J.43 (1994), 1399–1438. Zbl0840.28007
  28. [28] S. Marmi, P. Moussa & J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc.18 (2005), 823–872. Zbl1112.37002
  29. [29] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math.115 (1982), 169–200. Zbl0497.28012
  30. [30] A. Nogueira & D. J. Rudolph, Topological weak-mixing of interval exchange maps, Ergodic Theory Dynam. Systems17 (1997), 1183–1209. Zbl0958.37010
  31. [31] D. S. Ornstein, D. J. Rudolph & B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 37 (1982). Zbl0504.28019
  32. [32] V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR168 (1966), 1009–1011. Zbl0152.33404
  33. [33] R. C. Penner & J. L. Harer, Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press, 1992. Zbl0765.57001MR1144770
  34. [34] G. Rauzy, Échanges d’intervalles et transformations induites, Acta Arith.34 (1979), 315–328. Zbl0414.28018
  35. [35] Y. G. Sinai & C. Ulcigrai, Weak mixing in interval exchange transformations of periodic type, Lett. Math. Phys.74 (2005), 111–133. Zbl1105.37002MR2191950
  36. [36] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2 , Trans. Amer. Math. Soc.140 (1969), 1–33. Zbl0201.05601
  37. [37] W. A. Veech, Interval exchange transformations, J. Anal. Math.33 (1978), 222–272. Zbl0455.28006MR516048
  38. [38] W. A. Veech, A criterion for a process to be prime, Monatsh. Math.94 (1982), 335–341. Zbl0499.28016MR685378
  39. [39] W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math.115 (1982), 201–242. Zbl0486.28014
  40. [40] W. A. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties, Amer. J. Math. 106 (1984), 1331–1359. Zbl0631.28006MR765582
  41. [41] M. Viana, Dynamics of interval exchange maps and Teichmüller flows, preprint http://w3.impa.br/~viana/out/ietf.pdf. 
  42. [42] J.-C. Yoccoz, Échanges d’intervalles, cours au Collège de France, http://www.college-de-france.fr/media/equ_dif/UPL8726_yoccoz05.pdf, 2005. 
  43. [43] J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: an introduction, in Frontiers in number theory, physics, and geometry. I, Springer, 2006, 401–435. Zbl1127.28011MR2261103
  44. [44] A. Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), 325–370. Zbl0853.28007MR1393518

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.