The Briançon-Skoda number of analytic irreducible planar curves

Jacob Sznajdman[1]

  • [1] Chalmers University of Technology and University of Gothenburg Mathematical Sciences S-412 96 Gothenburg (Suède)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 1, page 177-187
  • ISSN: 0373-0956

Abstract

top
The Briançon-Skoda number of a ring R is defined as the smallest integer k, such that for any ideal I R and l 1 , the integral closure of I k + l - 1 is contained in I l . We compute the Briançon-Skoda number of the local ring of any analytic irreducible planar curve in terms of its Puiseux characteristics. It turns out that this number is closely related to the Milnor number.

How to cite

top

Sznajdman, Jacob. "The Briançon-Skoda number of analytic irreducible planar curves." Annales de l’institut Fourier 64.1 (2014): 177-187. <http://eudml.org/doc/275660>.

@article{Sznajdman2014,
abstract = {The Briançon-Skoda number of a ring $R$ is defined as the smallest integer k, such that for any ideal $I\subset R$ and $l\ge 1$, the integral closure of $I^\{k+l-1\}$ is contained in $I^l$. We compute the Briançon-Skoda number of the local ring of any analytic irreducible planar curve in terms of its Puiseux characteristics. It turns out that this number is closely related to the Milnor number.},
affiliation = {Chalmers University of Technology and University of Gothenburg Mathematical Sciences S-412 96 Gothenburg (Suède)},
author = {Sznajdman, Jacob},
journal = {Annales de l’institut Fourier},
keywords = {Briançon-Skoda theorem; Puiseux pairs; Milnor number; residue currents},
language = {eng},
number = {1},
pages = {177-187},
publisher = {Association des Annales de l’institut Fourier},
title = {The Briançon-Skoda number of analytic irreducible planar curves},
url = {http://eudml.org/doc/275660},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Sznajdman, Jacob
TI - The Briançon-Skoda number of analytic irreducible planar curves
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 177
EP - 187
AB - The Briançon-Skoda number of a ring $R$ is defined as the smallest integer k, such that for any ideal $I\subset R$ and $l\ge 1$, the integral closure of $I^{k+l-1}$ is contained in $I^l$. We compute the Briançon-Skoda number of the local ring of any analytic irreducible planar curve in terms of its Puiseux characteristics. It turns out that this number is closely related to the Milnor number.
LA - eng
KW - Briançon-Skoda theorem; Puiseux pairs; Milnor number; residue currents
UR - http://eudml.org/doc/275660
ER -

References

top
  1. Mats Andersson, A residue criterion for strong holomorphicity, Ark. Mat. 48 (2010), 1-15 Zbl1198.32001MR2594583
  2. Mats Andersson, Håkan Samuelsson, A Dolbeault-Grothendieck lemma on complex spaces via Koppelman formulas, Invent. Math. 190 (2012), 261-297 Zbl1271.32009MR2981816
  3. Mats Andersson, Håkan Samuelsson, Jacob Sznajdman, On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier (Grenoble) 60 (2010), 417-432 Zbl1200.32007MR2667781
  4. Mats Andersson, Elizabeth Wulcan, Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. (4) 40 (2007), 985-1007 Zbl1143.32003MR2419855
  5. Jan-Erik Björk, Håkan Samuelsson, Regularizations of residue currents, J. Reine Angew. Math. 649 (2010), 33-54 Zbl1208.32005MR2746465
  6. A. Dickenstein, C. Sessa, Canonical representatives in moderate cohomology, Invent. Math. 80 (1985), 417-434 Zbl0556.32005MR791667
  7. Daniel Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc. 72 (1952), 414-436 Zbl0046.38503MR49591
  8. M. Herrera, D. Lieberman, Residues and principal values on complex spaces, Math. Ann. 194 (1971), 259-294 Zbl0224.32012MR296352
  9. Craig Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), 203-223 Zbl0756.13001MR1135470
  10. Kunihiko Kodaira, The theorem of Riemann-Roch on compact analytic surfaces, Amer. J. Math. 73 (1951), 813-875 Zbl0054.06405MR48107
  11. Kunihiko Kodaira, On compact complex analytic surfaces. I, (1955) Zbl0098.13004
  12. Solomon Lefschetz, Algebraic geometry, (1953), Princeton University Press, Princeton, N. J. Zbl0052.37504MR56950
  13. Monique Lejeune-Jalabert, Bernard Teissier, Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse Math. (6) 17 (2008), 781-859 Zbl1171.13005MR2499856
  14. Joseph Lipman, Bernard Teissier, Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), 97-116 Zbl0464.13005MR600418
  15. John Milnor, Singular points of complex hypersurfaces, (1968), Princeton University Press, Princeton, N.J. Zbl0184.48405MR239612
  16. Mikael Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75-152 Zbl0633.32005MR961584
  17. Pierre Samuel, Singularités des variétés algébriques, Bull. Soc. Math. France 79 (1951), 121-129 Zbl0044.35405MR52832
  18. Henri Skoda, Joël Briançon, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de C n , C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951 Zbl0307.32007MR340642
  19. A. K. Tsikh, Multidimensional residues and their applications, 103 (1992), American Mathematical Society, Providence, RI Zbl0758.32001MR1181199
  20. Hassler Whitney, Complex analytic varieties, (1972), Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. Zbl0265.32008MR387634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.