Closed universal subspaces of spaces of infinitely differentiable functions

Stéphane Charpentier[1]; Quentin Menet[2]; Augustin Mouze[3]

  • [1] Laboratoire Paul Painlevé, UMR 8524, Université Lille 1, Cité Scientifique, 59650 Villeneuve d’Ascq
  • [2] Institut de Mathématique, Université de Mons, 20 Place du Parc, 7000 Mons, Belgique
  • [3] Laboratoire Paul Painlevé, UMR 8524, Current address: École Centrale de Lille, Cité Scientifique, BP48, 59651 Villeneuve d’Ascq cedex

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 1, page 297-325
  • ISSN: 0373-0956

Abstract

top
We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace of universal series in the Fréchet space 𝕂 .

How to cite

top

Charpentier, Stéphane, Menet, Quentin, and Mouze, Augustin. "Closed universal subspaces of spaces of infinitely differentiable functions." Annales de l’institut Fourier 64.1 (2014): 297-325. <http://eudml.org/doc/275666>.

@article{Charpentier2014,
abstract = {We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace of universal series in the Fréchet space $\mathbb\{K\}^\{\mathbb\{N\}\}.$},
affiliation = {Laboratoire Paul Painlevé, UMR 8524, Université Lille 1, Cité Scientifique, 59650 Villeneuve d’Ascq; Institut de Mathématique, Université de Mons, 20 Place du Parc, 7000 Mons, Belgique; Laboratoire Paul Painlevé, UMR 8524, Current address: École Centrale de Lille, Cité Scientifique, BP48, 59651 Villeneuve d’Ascq cedex},
author = {Charpentier, Stéphane, Menet, Quentin, Mouze, Augustin},
journal = {Annales de l’institut Fourier},
keywords = {infinitely differentiable real functions; spaceability; universality; universal series; Taylor series},
language = {eng},
number = {1},
pages = {297-325},
publisher = {Association des Annales de l’institut Fourier},
title = {Closed universal subspaces of spaces of infinitely differentiable functions},
url = {http://eudml.org/doc/275666},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Charpentier, Stéphane
AU - Menet, Quentin
AU - Mouze, Augustin
TI - Closed universal subspaces of spaces of infinitely differentiable functions
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 297
EP - 325
AB - We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace of universal series in the Fréchet space $\mathbb{K}^{\mathbb{N}}.$
LA - eng
KW - infinitely differentiable real functions; spaceability; universality; universal series; Taylor series
UR - http://eudml.org/doc/275666
ER -

References

top
  1. R. Aron, Linearity in non-linear situations, Advanced courses of mathematical analysis. II (2007), 1-15, World Sci. Publ., Hackensack, NJ Zbl1149.46022MR2334322
  2. F. Bayart, Linearity of sets of strange functions, Michigan Math. J. 53 (2005), 291-303 Zbl1092.46006MR2152701
  3. F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis, C. Papadimitropoulos, Abstract theory of universal series and applications, Proc. London Math. Soc. 96 (2008), 417-463 Zbl1147.30003MR2396846
  4. J. Bonet, A problem on the structure of Fréchet spaces, Rev. R. Acad. Cien. Serie A. Mat. 104 (2010), 427-434 Zbl1262.46001MR2757250
  5. J. Bonet, F. Martìnez-Giménez, A. Peris, Universal and chaotic multipliers on spaces of operators, J. Math. Anal. Appl. 294 (2004), 599-611 Zbl1062.47011MR2088683
  6. E. Borel, Sur quelques points de la théorie des fonctions, Ann. Sci. École Norm. Sup. 12 (1895), 9-55 Zbl26.0429.03MR1508908
  7. J. Bés, J. A. Conejero, Hypercyclic subspaces in omega, J. Math. Anal. Appl. 316 (2006), 16-23 Zbl1094.47011MR2201746
  8. S. Charpentier, On the closed subspaces of universal series in Banach spaces and Fréchet spaces, Studia Math. 198 (2010), 121-145 Zbl1201.30005MR2640073
  9. K-G. Grosse Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345-381 Zbl0933.47003MR1685272
  10. H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. 1A 20 (1973), 25-105 Zbl0258.46039MR320743
  11. F. León Saavedra, V. Müller, Hypercyclic sequences of operators, Studia Math. 175 (2006), 1-18 Zbl1106.47011MR2261697
  12. Q. Menet, Sous-espace fermés de séries universelles sur un espace de Fréchet, Studia Math. 207 (2011), 181-195 Zbl1256.30053MR2864388
  13. Q. Menet, Hypercyclic subspaces and weighted shifts, (2012) Zbl1322.47016
  14. A. Mouze, V. Nestoridis, Universality and ultradifferentiable functions: Fekete’s Theorem, Proc. Amer. Math. Soc. 138 (2010), 3945-3955 Zbl1207.30082MR2679616
  15. H. Petersson, Hypercyclic subspaces for Fréchet space operators, J. Math. Anal. Appl. 319 (2006), 764-782 Zbl1101.47006MR2227937
  16. H-J. Petzsche, On E. Borel’s theorem, Math. Ann. 282 (1988), 299-313 Zbl0633.46033
  17. G. Pál, Zwei kleine Bemerkungen, Tohoku Math. J. 6 (1914/15), 42-43 
  18. A. I. Seleznev, On universal power series, Math. Sbornik N.S. 28 (1951), 453-460 Zbl0043.29501MR41928
  19. N. Tsirivas, Simultaneous approximation by universal series, Math. Nachr. 283 (2010), 909-920 Zbl1194.41028MR2668431

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.