Closed universal subspaces of spaces of infinitely differentiable functions
Stéphane Charpentier[1]; Quentin Menet[2]; Augustin Mouze[3]
- [1] Laboratoire Paul Painlevé, UMR 8524, Université Lille 1, Cité Scientifique, 59650 Villeneuve d’Ascq
- [2] Institut de Mathématique, Université de Mons, 20 Place du Parc, 7000 Mons, Belgique
- [3] Laboratoire Paul Painlevé, UMR 8524, Current address: École Centrale de Lille, Cité Scientifique, BP48, 59651 Villeneuve d’Ascq cedex
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 1, page 297-325
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCharpentier, Stéphane, Menet, Quentin, and Mouze, Augustin. "Closed universal subspaces of spaces of infinitely differentiable functions." Annales de l’institut Fourier 64.1 (2014): 297-325. <http://eudml.org/doc/275666>.
@article{Charpentier2014,
abstract = {We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace of universal series in the Fréchet space $\mathbb\{K\}^\{\mathbb\{N\}\}.$},
affiliation = {Laboratoire Paul Painlevé, UMR 8524, Université Lille 1, Cité Scientifique, 59650 Villeneuve d’Ascq; Institut de Mathématique, Université de Mons, 20 Place du Parc, 7000 Mons, Belgique; Laboratoire Paul Painlevé, UMR 8524, Current address: École Centrale de Lille, Cité Scientifique, BP48, 59651 Villeneuve d’Ascq cedex},
author = {Charpentier, Stéphane, Menet, Quentin, Mouze, Augustin},
journal = {Annales de l’institut Fourier},
keywords = {infinitely differentiable real functions; spaceability; universality; universal series; Taylor series},
language = {eng},
number = {1},
pages = {297-325},
publisher = {Association des Annales de l’institut Fourier},
title = {Closed universal subspaces of spaces of infinitely differentiable functions},
url = {http://eudml.org/doc/275666},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Charpentier, Stéphane
AU - Menet, Quentin
AU - Mouze, Augustin
TI - Closed universal subspaces of spaces of infinitely differentiable functions
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 297
EP - 325
AB - We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace of universal series in the Fréchet space $\mathbb{K}^{\mathbb{N}}.$
LA - eng
KW - infinitely differentiable real functions; spaceability; universality; universal series; Taylor series
UR - http://eudml.org/doc/275666
ER -
References
top- R. Aron, Linearity in non-linear situations, Advanced courses of mathematical analysis. II (2007), 1-15, World Sci. Publ., Hackensack, NJ Zbl1149.46022MR2334322
- F. Bayart, Linearity of sets of strange functions, Michigan Math. J. 53 (2005), 291-303 Zbl1092.46006MR2152701
- F. Bayart, K.-G. Grosse-Erdmann, V. Nestoridis, C. Papadimitropoulos, Abstract theory of universal series and applications, Proc. London Math. Soc. 96 (2008), 417-463 Zbl1147.30003MR2396846
- J. Bonet, A problem on the structure of Fréchet spaces, Rev. R. Acad. Cien. Serie A. Mat. 104 (2010), 427-434 Zbl1262.46001MR2757250
- J. Bonet, F. Martìnez-Giménez, A. Peris, Universal and chaotic multipliers on spaces of operators, J. Math. Anal. Appl. 294 (2004), 599-611 Zbl1062.47011MR2088683
- E. Borel, Sur quelques points de la théorie des fonctions, Ann. Sci. École Norm. Sup. 12 (1895), 9-55 Zbl26.0429.03MR1508908
- J. Bés, J. A. Conejero, Hypercyclic subspaces in omega, J. Math. Anal. Appl. 316 (2006), 16-23 Zbl1094.47011MR2201746
- S. Charpentier, On the closed subspaces of universal series in Banach spaces and Fréchet spaces, Studia Math. 198 (2010), 121-145 Zbl1201.30005MR2640073
- K-G. Grosse Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345-381 Zbl0933.47003MR1685272
- H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. 1A 20 (1973), 25-105 Zbl0258.46039MR320743
- F. León Saavedra, V. Müller, Hypercyclic sequences of operators, Studia Math. 175 (2006), 1-18 Zbl1106.47011MR2261697
- Q. Menet, Sous-espace fermés de séries universelles sur un espace de Fréchet, Studia Math. 207 (2011), 181-195 Zbl1256.30053MR2864388
- Q. Menet, Hypercyclic subspaces and weighted shifts, (2012) Zbl1322.47016
- A. Mouze, V. Nestoridis, Universality and ultradifferentiable functions: Fekete’s Theorem, Proc. Amer. Math. Soc. 138 (2010), 3945-3955 Zbl1207.30082MR2679616
- H. Petersson, Hypercyclic subspaces for Fréchet space operators, J. Math. Anal. Appl. 319 (2006), 764-782 Zbl1101.47006MR2227937
- H-J. Petzsche, On E. Borel’s theorem, Math. Ann. 282 (1988), 299-313 Zbl0633.46033
- G. Pál, Zwei kleine Bemerkungen, Tohoku Math. J. 6 (1914/15), 42-43
- A. I. Seleznev, On universal power series, Math. Sbornik N.S. 28 (1951), 453-460 Zbl0043.29501MR41928
- N. Tsirivas, Simultaneous approximation by universal series, Math. Nachr. 283 (2010), 909-920 Zbl1194.41028MR2668431
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.