Loading [MathJax]/extensions/MathZoom.js
We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace...
We give another version of the recently developed abstract theory of universal series to exhibit a necessary and sufficient condition of polynomial approximation type for the existence of universal elements. This certainly covers the case of simultaneous approximation with a sequence of continuous linear mappings. In the case of a sequence of unbounded operators the same condition ensures existence and density of universal elements. Several known results, stronger statements or new results can be...
We improve a result of Charpentier [Studia Math. 198 (2010)]. We prove that even on Fréchet spaces with a continuous norm, the existence of only one restrictively universal series implies the existence of a closed infinite-dimensional subspace of restrictively universal series.
A holomorphic function on a simply connected domain is said to possess a universal Taylor series about a point in if the partial sums of that series approximate arbitrary polynomials on arbitrary compacta outside (provided only that has connected complement). This paper shows that this property is not conformally invariant, and, in the case where is the unit disc, that such functions have extreme angular boundary behaviour.
Currently displaying 1 –
4 of
4