Local volumes of Cartier divisors over normal algebraic varieties

Mihai Fulger[1]

  • [1] Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 5, page 1793-1847
  • ISSN: 0373-0956

Abstract

top
In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.

How to cite

top

Fulger, Mihai. "Local volumes of Cartier divisors over normal algebraic varieties." Annales de l’institut Fourier 63.5 (2013): 1793-1847. <http://eudml.org/doc/275667>.

@article{Fulger2013,
abstract = {In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.},
affiliation = {Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania},
author = {Fulger, Mihai},
journal = {Annales de l’institut Fourier},
keywords = {Local volumes; Hilbert-Samuel multiplicity; plurigenera; asymptotic invariants; Okounkov body; local volumes},
language = {eng},
number = {5},
pages = {1793-1847},
publisher = {Association des Annales de l’institut Fourier},
title = {Local volumes of Cartier divisors over normal algebraic varieties},
url = {http://eudml.org/doc/275667},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Fulger, Mihai
TI - Local volumes of Cartier divisors over normal algebraic varieties
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 1793
EP - 1847
AB - In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.
LA - eng
KW - Local volumes; Hilbert-Samuel multiplicity; plurigenera; asymptotic invariants; Okounkov body; local volumes
UR - http://eudml.org/doc/275667
ER -

References

top
  1. S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated singularity, (2011) Zbl1251.14026
  2. S. D. Cutkosky, Asymptotic growth of saturated powers and epsilon multiplicity, Math. Res. Lett. 18 (2011), 93-106 Zbl1238.13012MR2770584
  3. S. D. Cutkosky, H. T. Hà, H. Srinivasan, E. Theodorescu, Asymptotic behavior of the length of local cohomology, Canad. J. Math. 57 (2005), 1178-1192 Zbl1095.13015MR2178557
  4. T. de Fernex, C. D. Hacon, Singularities on normal varieties, Compos. Math. 2 (2009), 393-414 Zbl1179.14003MR2501423
  5. A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. (1996), 51-93 Zbl0916.14005MR1423020
  6. O. Debarre, Complex tori and abelian varieties, 11 (2005), SMF/AMS texts and monographs Zbl1078.14061MR2158864
  7. W. Fulton, Introduction to toric varieties, (1997) Zbl0813.14039
  8. F. M. Ganter, Properties of - P · P for Gorenstein surface singularities, Math. Z. 223 (1996), 411-419 Zbl0901.14006MR1417852
  9. A. Grothendieck, Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux(SGA 2), (1962), Séminaire de Géométrie Algébrique du Bois Marie Zbl0197.47202MR2171939
  10. C. Hacon, J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25 Zbl1121.14011MR2242631
  11. C. Hacon, J. McKernan, C. Xu, On the birational automorphisms of varieties of general type, (2010) Zbl1281.14036
  12. R. Hartshorne, Algebraic Geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
  13. S. Iitaka, Algebraic Geometry: An introduction to Birational Geometry of algebraic varieties, (1977), Iwanami Shoten, Tokyo Zbl0656.14001
  14. S. Ishii, The asymptotic behavior of plurigenera for a normal isolated singularity, Math. Ann. 286 (1990), 803-812 Zbl0668.14002MR1045403
  15. S. Izumi, A measure of integrity for local analytic algebras, Publ. RIMS, Kyoto Univ. 21 (1985), 719-735 Zbl0587.32016MR817161
  16. Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Algebraic Geometry, Sendai (1985) 10 (1987), 283-360, North-Holland, Amsterdam Zbl0672.14006MR946243
  17. F. W. Knöller, 2-dimensionale singularitäten und differentialformen, Math. Ann. 206 (1973), 205-213 Zbl0258.32002MR340260
  18. A. Küronya, Asymptotic cohomological functions on projective varieties, Amer. J. Math. 128 (2006), 1475-1519 Zbl1114.14005MR2275909
  19. R. Lazarsfeld, Positivity in Algebraic Geometry I, II, 49 (2004), Springer-Verlag, Berlin Zbl0633.14016MR2095471
  20. R. Lazarsfeld, M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 783-835 Zbl1182.14004MR2571958
  21. M. Morales, Resolution of quasihomogeneous singularities and plurigenera, Compos. Math. 64 (1987), 311-327 Zbl0648.14005MR918415
  22. T. Okuma, The pluri–genera of surface singularities, Tôhoku Math. J. 50 (1998), 119-132 Zbl0928.14023MR1604636
  23. T. Okuma, Plurigenera of surface singularities, (2000), Nova Science Publishers, Inc. Zbl0902.14025
  24. D. Rees, Izumi’s Theorem, Commutative Algebra (1989), 407-416, HochsterM.M. Zbl0741.13011MR1015531
  25. F. Sakai, Kodaira dimensions of complements of divisors, Complex analysis and algebraic geometry (1977), 239-257, Iwanami Shoten, Tokyo Zbl0375.14009MR590433
  26. S. Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587 Zbl1108.14031MR2242627
  27. M. Tomari, K. Watanabe, On L 2 –plurigenera of not-log–canonical Gorenstein isolated singularities, Proceedings of the AMS 109 (1990), 931-935 Zbl0714.32010MR1021213
  28. H. Tsuchihashi, Higher-dimensional analogues of periodic continued fractions and cusp singularities, Tohoku Math. J. (2) 35 (1983), 607-639 Zbl0585.14004MR721966
  29. H. Tsuji, Pluricanonical systems of projective varieties of general type, v1-v10, (1999–2004) 
  30. S. Urbinati, Discrepancies of non- - Gorenstein varieties, (2010) Zbl1260.14042
  31. K. Wada, The behavior of the second pluri–genus of normal surface singularities of type * A n , * D n , * E n , * A n ˜ , * D n ˜ and * E n ˜ , Math. J. Okayama Univ. 45 (2003), 45-58 Zbl1061.14030MR2038838
  32. J. Wahl, A characteristic number for links of surface singularities, Journal of The AMS 3 (1990), 625-637 Zbl0743.14026MR1044058
  33. K. Watanabe, On plurigenera of normal isolated singularities. I, Math. Ann. 250 (1980), 65-94 Zbl0414.32005MR581632
  34. S. S. T. Yau, Two theorems in higher dimensional singularities, Math. Ann. 231 (1977), 44-59 Zbl0343.32010MR492389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.