Local volumes of Cartier divisors over normal algebraic varieties
Mihai Fulger[1]
- [1] Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 5, page 1793-1847
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFulger, Mihai. "Local volumes of Cartier divisors over normal algebraic varieties." Annales de l’institut Fourier 63.5 (2013): 1793-1847. <http://eudml.org/doc/275667>.
@article{Fulger2013,
abstract = {In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.},
affiliation = {Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, RO-014700, Bucharest, Romania},
author = {Fulger, Mihai},
journal = {Annales de l’institut Fourier},
keywords = {Local volumes; Hilbert-Samuel multiplicity; plurigenera; asymptotic invariants; Okounkov body; local volumes},
language = {eng},
number = {5},
pages = {1793-1847},
publisher = {Association des Annales de l’institut Fourier},
title = {Local volumes of Cartier divisors over normal algebraic varieties},
url = {http://eudml.org/doc/275667},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Fulger, Mihai
TI - Local volumes of Cartier divisors over normal algebraic varieties
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 5
SP - 1793
EP - 1847
AB - In this paper we study a notion of local volume for Cartier divisors on arbitrary blow-ups of normal complex algebraic varieties of dimension greater than one, with a distinguished point. We apply this to study an invariant for normal isolated singularities, generalizing a volume defined by J. Wahl for surfaces. We also compare this generalization to a different one arising in recent work of T. de Fernex, S. Boucksom, and C. Favre.
LA - eng
KW - Local volumes; Hilbert-Samuel multiplicity; plurigenera; asymptotic invariants; Okounkov body; local volumes
UR - http://eudml.org/doc/275667
ER -
References
top- S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated singularity, (2011) Zbl1251.14026
- S. D. Cutkosky, Asymptotic growth of saturated powers and epsilon multiplicity, Math. Res. Lett. 18 (2011), 93-106 Zbl1238.13012MR2770584
- S. D. Cutkosky, H. T. Hà, H. Srinivasan, E. Theodorescu, Asymptotic behavior of the length of local cohomology, Canad. J. Math. 57 (2005), 1178-1192 Zbl1095.13015MR2178557
- T. de Fernex, C. D. Hacon, Singularities on normal varieties, Compos. Math. 2 (2009), 393-414 Zbl1179.14003MR2501423
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. (1996), 51-93 Zbl0916.14005MR1423020
- O. Debarre, Complex tori and abelian varieties, 11 (2005), SMF/AMS texts and monographs Zbl1078.14061MR2158864
- W. Fulton, Introduction to toric varieties, (1997) Zbl0813.14039
- F. M. Ganter, Properties of for Gorenstein surface singularities, Math. Z. 223 (1996), 411-419 Zbl0901.14006MR1417852
- A. Grothendieck, Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux(SGA 2), (1962), Séminaire de Géométrie Algébrique du Bois Marie Zbl0197.47202MR2171939
- C. Hacon, J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25 Zbl1121.14011MR2242631
- C. Hacon, J. McKernan, C. Xu, On the birational automorphisms of varieties of general type, (2010) Zbl1281.14036
- R. Hartshorne, Algebraic Geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- S. Iitaka, Algebraic Geometry: An introduction to Birational Geometry of algebraic varieties, (1977), Iwanami Shoten, Tokyo Zbl0656.14001
- S. Ishii, The asymptotic behavior of plurigenera for a normal isolated singularity, Math. Ann. 286 (1990), 803-812 Zbl0668.14002MR1045403
- S. Izumi, A measure of integrity for local analytic algebras, Publ. RIMS, Kyoto Univ. 21 (1985), 719-735 Zbl0587.32016MR817161
- Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Algebraic Geometry, Sendai (1985) 10 (1987), 283-360, North-Holland, Amsterdam Zbl0672.14006MR946243
- F. W. Knöller, 2-dimensionale singularitäten und differentialformen, Math. Ann. 206 (1973), 205-213 Zbl0258.32002MR340260
- A. Küronya, Asymptotic cohomological functions on projective varieties, Amer. J. Math. 128 (2006), 1475-1519 Zbl1114.14005MR2275909
- R. Lazarsfeld, Positivity in Algebraic Geometry I, II, 49 (2004), Springer-Verlag, Berlin Zbl0633.14016MR2095471
- R. Lazarsfeld, M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 783-835 Zbl1182.14004MR2571958
- M. Morales, Resolution of quasihomogeneous singularities and plurigenera, Compos. Math. 64 (1987), 311-327 Zbl0648.14005MR918415
- T. Okuma, The pluri–genera of surface singularities, Tôhoku Math. J. 50 (1998), 119-132 Zbl0928.14023MR1604636
- T. Okuma, Plurigenera of surface singularities, (2000), Nova Science Publishers, Inc. Zbl0902.14025
- D. Rees, Izumi’s Theorem, Commutative Algebra (1989), 407-416, HochsterM.M. Zbl0741.13011MR1015531
- F. Sakai, Kodaira dimensions of complements of divisors, Complex analysis and algebraic geometry (1977), 239-257, Iwanami Shoten, Tokyo Zbl0375.14009MR590433
- S. Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587 Zbl1108.14031MR2242627
- M. Tomari, K. Watanabe, On –plurigenera of not-log–canonical Gorenstein isolated singularities, Proceedings of the AMS 109 (1990), 931-935 Zbl0714.32010MR1021213
- H. Tsuchihashi, Higher-dimensional analogues of periodic continued fractions and cusp singularities, Tohoku Math. J. (2) 35 (1983), 607-639 Zbl0585.14004MR721966
- H. Tsuji, Pluricanonical systems of projective varieties of general type, v1-v10, (1999–2004)
- S. Urbinati, Discrepancies of non-Gorenstein varieties, (2010) Zbl1260.14042
- K. Wada, The behavior of the second pluri–genus of normal surface singularities of type ,, , , and , Math. J. Okayama Univ. 45 (2003), 45-58 Zbl1061.14030MR2038838
- J. Wahl, A characteristic number for links of surface singularities, Journal of The AMS 3 (1990), 625-637 Zbl0743.14026MR1044058
- K. Watanabe, On plurigenera of normal isolated singularities. I, Math. Ann. 250 (1980), 65-94 Zbl0414.32005MR581632
- S. S. T. Yau, Two theorems in higher dimensional singularities, Math. Ann. 231 (1977), 44-59 Zbl0343.32010MR492389
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.