About a Variant of the Vlasov equation, dubbed “Vlasov-Dirac-Benney Equation"
- [1] Laboratoire Jacques-Louis Lions Paris France
Séminaire Laurent Schwartz — EDP et applications (2012-2013)
- Volume: 2012-2013, page 1-21
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topBardos, Claude. "About a Variant of the $1d$ Vlasov equation, dubbed “Vlasov-Dirac-Benney Equation"." Séminaire Laurent Schwartz — EDP et applications 2012-2013 (2012-2013): 1-21. <http://eudml.org/doc/275677>.
@article{Bardos2012-2013,
abstract = {This is a report on project initiated with Anne Nouri [3], presently in progress, with the collaboration of Nicolas Besse [2] ([2] is mainly the material of this report) . It concerns a version of the Vlasov equation where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full non linear problem and also on natural connections with several other equations of mathematical physic.},
affiliation = {Laboratoire Jacques-Louis Lions Paris France},
author = {Bardos, Claude},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-21},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {About a Variant of the $1d$ Vlasov equation, dubbed “Vlasov-Dirac-Benney Equation"},
url = {http://eudml.org/doc/275677},
volume = {2012-2013},
year = {2012-2013},
}
TY - JOUR
AU - Bardos, Claude
TI - About a Variant of the $1d$ Vlasov equation, dubbed “Vlasov-Dirac-Benney Equation"
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2012-2013
SP - 1
EP - 21
AB - This is a report on project initiated with Anne Nouri [3], presently in progress, with the collaboration of Nicolas Besse [2] ([2] is mainly the material of this report) . It concerns a version of the Vlasov equation where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full non linear problem and also on natural connections with several other equations of mathematical physic.
LA - eng
UR - http://eudml.org/doc/275677
ER -
References
top- V. I. Arnold, On an a priori estimate in the theory of hydrodynamical stability;, Amer. Math. Soc. Transl. 79 (1969) 267–269. Zbl0191.56303
- C. Bardos and N. Besse, The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in Fluid Mechanics and Semi-classical Limits, Submitted to Kinetic Theory and Related Models. Zbl1292.35293
- C. Bardos and A. Nouri, A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys. 53 (2012), no. 11, 115621–115637. Zbl06245443MR3026566
- D. J. Benney, Some properties of long nonlinear waves, Stud. Appl. Math. 53 (1973), 45–50. Zbl0259.35011
- N. Besse, On the Waterbag Continuum, Arch. Rat. Mech. Anal. 199 (2011), no. 2, 453–491. Zbl1229.35297MR2763031
- N. Besse, F. Berthelin, Y. Brenier, P. Bertrand, The multi-water-bag equations for collision less kinetic modelization, Kin. Relat. Models 2 (2009), 39-90. Zbl1185.35292MR2472149
- Y. Brenier, Une formulation de type Vlasov-Poisson pour les equations d’Euler des fluides parfaits incompressibles, Inria report no 1070 INRIA-Rocquencourt (1989).
- Y.Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000), 737–754. Zbl0970.35110MR1748352
- Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity 12, (1999), 495-512,. Zbl0984.35131MR1690189
- J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, (French) J. Funct. Anal. 7 (1971), 386–446. Zbl0211.12902MR276830
- C.Q. Chen, P.G. Lefloch, Existence theory for the isentropic Euler equations, Arch. Rational Mech. Anal. 166 (2003), 81–98. Zbl1027.76043MR1952080
- M.G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc., 78 (1980), 385-390 . Zbl0449.47059MR553381
- C. Dafermos, “Hyperbolic conservation Laws in continuum Physics”, Springer-Verlag, New York, 2000. Zbl1078.35001MR1763936
- M.R. Feix, F. Hohl, L.D. Staton, Nonlinear effects in plasmas, (eds. Kalman and Feix), Gordon and Breach, (1969), 3–21.
- P. Gérard, Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, Séminaire sur les Equations aux Dérivées Partielles, 1992-1993, Exp. No. XIII, 13 pp., Ecole Polytech., Palaiseau, 1993. Zbl0874.35111
- P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50 (1997), no 4, 323–379. Zbl0881.35099MR1438151
- E. Grenier, Limite semi-classique de l’équation de Schrödinger non linéaire en temps petit, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no 6, 691–694. Zbl0835.35132MR1323939
- E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc. 126 (1998), no 2, 523–530. Zbl0910.35115MR1425123
- E. Grenier, Limite quasineutre en dimension 1, Journées “Equations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), Exp. No II, 8 pp., Univ. Nantes, Nantes, 1999. Zbl1008.35054MR1718954
- Y. Guo, I. Tice, Compressible, inviscid Rayleigh-Taylor instability, Indiana Univ. Math. J. 60 (2011), no. 2, 677–711. Zbl1248.35153MR2963789
- D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons Comm. Partial Differential Equations 36 (2011), no. 8, 1385–1425. Zbl1228.35251MR2825596
- P. E. Jabin, A. Nouri, Analytic solutions to a strongly nonlinear Vlasov, C. R. Math. Acad. Sci. Paris 349 (2011), no. 9-10, 541–546. Zbl1219.35046MR2802921
- S. Jin, C. D., Levermore, D.W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure Appl. Math. 52 (1999), no. 5, 613–654. Zbl0935.35148MR1670048
- T. Kato, “Perturbation Theory for Linear Operators”, Springer-Verlag, New York, 1966. Zbl0435.47001MR203473
- N. Krall and A. Trivelpeice, “Principles of Plasma Physics”, International Series in Pure and Apllied Physics MacGraw-Hill Book Company New York 1973.
- J.-L. Lions, Les semi groupes distributions, (French) Port. Math. 19 (1960), 141–164. Zbl0103.09001MR143045
- P.-L. Lions, T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993), no. 3, 553–618. Zbl0801.35117MR1251718
- G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl. (9) 86 (2006), no. 1, 68Ð79. Zbl1111.35045MR2246357
- A. Majda, “Compressible fluid flow and systems of conservation laws in several space variables”, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984. Zbl0537.76001MR748308
- R.C. Paley, N. Wiener, “Fourier transforms in the complex plane”, AMS Vol 19. (1934). Zbl0011.01601
- O. Penrose, Electronic Instabilities of a non Uniform Plasma Phys. of Fluids 3 (1960), no2, 258–265. Zbl0090.22801
- V. M. Teshukov, On hyperbolicity of long-wave equations, Soviet Math. Dokl. 32 (1985), 469–473. Zbl0615.35051MR805829
- V.M.Teshukov, On Cauchy problem for long-wave equations In: Numerical Methods for Free Boundary Problems, ISMN 92, vol. 106, pp. 333–338. Birkhäuser, Boston, 1992. Zbl0817.35082MR1229551
- V.M. Teshukov, Long waves in an eddying barotropic liquid, J. Appl. Mech. Tech. Phys. 35 (1994), 823–831. Zbl0999.76520MR1363888
- E.C. Titchmarsh, “Introduction to the theory of Fourier integrals”, Oxford, Clarendon press (1948). Zbl0017.40404
- K. Yosida, “Functional Analysis”, Springer -Verlag Berlin Heidelberg New York 1968. Zbl0435.46002MR239384
- V. E Zakharov, Benney equations and quasiclassical approximation in the inverse problem method, (Russian) Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 15–24. Zbl0453.35086MR575201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.