On the distribution of sparse sequences in prime fields and applications

Víctor Cuauhtemoc García[1]

  • [1] Departamento de Ciencias Básicas Universidad Autónoma Metropolitana–Azcapotzalco C.P. 02200, México D.F., México

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 2, page 317-329
  • ISSN: 1246-7405

Abstract

top
In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the L 1 -norm of trigonometric sums.

How to cite

top

García, Víctor Cuauhtemoc. "On the distribution of sparse sequences in prime fields and applications." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 317-329. <http://eudml.org/doc/275689>.

@article{García2013,
abstract = {In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the $L_1$-norm of trigonometric sums.},
affiliation = {Departamento de Ciencias Básicas Universidad Autónoma Metropolitana–Azcapotzalco C.P. 02200, México D.F., México},
author = {García, Víctor Cuauhtemoc},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {9},
number = {2},
pages = {317-329},
publisher = {Société Arithmétique de Bordeaux},
title = {On the distribution of sparse sequences in prime fields and applications},
url = {http://eudml.org/doc/275689},
volume = {25},
year = {2013},
}

TY - JOUR
AU - García, Víctor Cuauhtemoc
TI - On the distribution of sparse sequences in prime fields and applications
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 317
EP - 329
AB - In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the $L_1$-norm of trigonometric sums.
LA - eng
UR - http://eudml.org/doc/275689
ER -

References

top
  1. W. D. Banks, A. Conflitti, J. B. Friedlander and I. E. Shparlinski, Exponential sums over Mersenne numbers. Compos. Math. 140 (2004), no. 1, 15–30. Zbl1060.11045MR2004121
  2. W. D. Banks, M. Z. Garaev, F. Luca and I. E. Shparlinski, Uniform distribution of fractional parts related to pseudoprimes. Canad. J. Math. 61 (2009), no. 3, 481–502. Zbl1255.11040MR2514480
  3. J. Bourgain, Estimates on exponential sums related to the Diffie–Hellman distributions. Geom. Funct. Anal. 15 (2005), no. 1, 1–34. Zbl1102.11041MR2140627
  4. E. Croot, Sums of the form 1 / x 1 k + + 1 / x n k modulo a prime. Integers 4 (2004), A20, 6 pp. Zbl1083.11019MR2116005
  5. C. Elsholtz, The distribution of sequences in residue classes. Proc. Amer. Math. Soc. 130 (2002), no. 8, 2247–2250. Zbl1004.11052MR1896404
  6. P. Erdős and M. R.  Murty, On the order of a ( mod p ) . Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87–97. Zbl0931.11034MR1684594
  7. M. Z. Garaev, Upper bounds for the number of solutions of a diophantine equation. Trans. Amer. Math. Soc. 357 (2005), no. 6, 2527–2534. Zbl1114.11031MR2140449
  8. M. Z. Garaev, The large sieve inequality for the exponential sequence λ [ O ( n 15 / 14 + o ( 1 ) ) ] modulo primes. Canad. J. Math. 61 (2009), no. 2, 336–350. Zbl1179.11024MR2504019
  9. M. Z. Garaev and Ka–Lam Kueh, Distribution of special sequences modulo a large prime. Int. J. Math. Math. Sci. 50 (2003), 3189–3194. Zbl1037.11002MR2012641
  10. M. Z. Garaev and I. E. Shparlinski, The large sieve inequality with exponential functions and the distribution of Mersenne numbers modulo primes. Int. Math. Res. Not. 39 (2005), no. 39, 2391–2408. Zbl1162.11378MR2181356
  11. V. C. García, F. Luca and V. J. Mejía, On sums of Fibonacci numbers modulo p . Bull. Aust. Math. Soc. 83 (2011), 413–419. Zbl1238.11011MR2794527
  12. A. A. Glibichuk, Combinatorial properties of sets of residues modulo a prime and the Erdős–Graham problem. Mat. Zametki. 79 (2006), no. 3, 384–395; English transl., Math. Notes. 79 (2006). no. 3–4, 356–365. Zbl1129.11004MR2251362
  13. B. Green and S. V. Konyagin, On the Littlewood problem modulo a prime. Canad. J. Math. 61 (2009), no. 1, 141–164. Zbl1232.11013MR2488453
  14. A. A. Karatsuba, An estimate of the L 1 -norm of an expontential sum. Math. Notes 64 (1998), no. 3, 401–404. Zbl0924.11065MR1680181
  15. S. V. Konyagin, On a problem of Littlewood. Izv. Acad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.] 45 (1981), no. 2, 243–265. Zbl0493.42004MR616222
  16. S. V. Konyagin, An estimate of the L 1 -norm of an exponential sum. The Theory of Approximations of Functions and Operators. Abstracts of Papers of the International Conference Dedicated to Stechkin’s 80th Anniversary [in Russian]. Ekaterinburg, 2000, pp. 88-89. 
  17. O. C. McGehee, L. Pigno and B. Smith, Hardy’s inequality and the L 1 norm of exponential sums. Ann. of Math. (2) 113 (1981), no. 3, 613–618. Zbl0473.42001MR621019
  18. F. Pappalardi, On the order of finitely generated subgroups of * ( mod p ) and divisors of p - 1 . J. Number Theory 57 (1996), 207–222. Zbl0847.11049MR1382747
  19. A. Sárközy, On sums and products of residues modulo p . Acta Arith. 118 (2005), no. 4, 403–409. Zbl1078.11011MR2165553
  20. T. Schoen and I. Shkredov, Additive properties of multiplicative subgroups of 𝔽 p . Quart. J. Math. 63 (2012), no. 3, 713–722. Zbl1271.11014MR2967172
  21. I. E. Shplarlinski, On a question of Erdős and Graham. Arch. Math. 78 (2002), 445–448. Zbl1034.11012MR1921733

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.