On the distribution of sparse sequences in prime fields and applications
- [1] Departamento de Ciencias Básicas Universidad Autónoma Metropolitana–Azcapotzalco C.P. 02200, México D.F., México
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 2, page 317-329
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGarcía, Víctor Cuauhtemoc. "On the distribution of sparse sequences in prime fields and applications." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 317-329. <http://eudml.org/doc/275689>.
@article{García2013,
abstract = {In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the $L_1$-norm of trigonometric sums.},
affiliation = {Departamento de Ciencias Básicas Universidad Autónoma Metropolitana–Azcapotzalco C.P. 02200, México D.F., México},
author = {García, Víctor Cuauhtemoc},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {9},
number = {2},
pages = {317-329},
publisher = {Société Arithmétique de Bordeaux},
title = {On the distribution of sparse sequences in prime fields and applications},
url = {http://eudml.org/doc/275689},
volume = {25},
year = {2013},
}
TY - JOUR
AU - García, Víctor Cuauhtemoc
TI - On the distribution of sparse sequences in prime fields and applications
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 317
EP - 329
AB - In the present paper we investigate distributional properties of sparse sequences modulo almost all prime numbers. We obtain new results for a wide class of sparse sequences which in particular find applications on additive problems and the discrete Littlewood problem related to lower bound estimates of the $L_1$-norm of trigonometric sums.
LA - eng
UR - http://eudml.org/doc/275689
ER -
References
top- W. D. Banks, A. Conflitti, J. B. Friedlander and I. E. Shparlinski, Exponential sums over Mersenne numbers. Compos. Math. 140 (2004), no. 1, 15–30. Zbl1060.11045MR2004121
- W. D. Banks, M. Z. Garaev, F. Luca and I. E. Shparlinski, Uniform distribution of fractional parts related to pseudoprimes. Canad. J. Math. 61 (2009), no. 3, 481–502. Zbl1255.11040MR2514480
- J. Bourgain, Estimates on exponential sums related to the Diffie–Hellman distributions. Geom. Funct. Anal. 15 (2005), no. 1, 1–34. Zbl1102.11041MR2140627
- E. Croot, Sums of the form modulo a prime. Integers 4 (2004), A20, 6 pp. Zbl1083.11019MR2116005
- C. Elsholtz, The distribution of sequences in residue classes. Proc. Amer. Math. Soc. 130 (2002), no. 8, 2247–2250. Zbl1004.11052MR1896404
- P. Erdős and M. R. Murty, On the order of . Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87–97. Zbl0931.11034MR1684594
- M. Z. Garaev, Upper bounds for the number of solutions of a diophantine equation. Trans. Amer. Math. Soc. 357 (2005), no. 6, 2527–2534. Zbl1114.11031MR2140449
- M. Z. Garaev, The large sieve inequality for the exponential sequence modulo primes. Canad. J. Math. 61 (2009), no. 2, 336–350. Zbl1179.11024MR2504019
- M. Z. Garaev and Ka–Lam Kueh, Distribution of special sequences modulo a large prime. Int. J. Math. Math. Sci. 50 (2003), 3189–3194. Zbl1037.11002MR2012641
- M. Z. Garaev and I. E. Shparlinski, The large sieve inequality with exponential functions and the distribution of Mersenne numbers modulo primes. Int. Math. Res. Not. 39 (2005), no. 39, 2391–2408. Zbl1162.11378MR2181356
- V. C. García, F. Luca and V. J. Mejía, On sums of Fibonacci numbers modulo . Bull. Aust. Math. Soc. 83 (2011), 413–419. Zbl1238.11011MR2794527
- A. A. Glibichuk, Combinatorial properties of sets of residues modulo a prime and the Erdős–Graham problem. Mat. Zametki. 79 (2006), no. 3, 384–395; English transl., Math. Notes. 79 (2006). no. 3–4, 356–365. Zbl1129.11004MR2251362
- B. Green and S. V. Konyagin, On the Littlewood problem modulo a prime. Canad. J. Math. 61 (2009), no. 1, 141–164. Zbl1232.11013MR2488453
- A. A. Karatsuba, An estimate of the -norm of an expontential sum. Math. Notes 64 (1998), no. 3, 401–404. Zbl0924.11065MR1680181
- S. V. Konyagin, On a problem of Littlewood. Izv. Acad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.] 45 (1981), no. 2, 243–265. Zbl0493.42004MR616222
- S. V. Konyagin, An estimate of the -norm of an exponential sum. The Theory of Approximations of Functions and Operators. Abstracts of Papers of the International Conference Dedicated to Stechkin’s 80th Anniversary [in Russian]. Ekaterinburg, 2000, pp. 88-89.
- O. C. McGehee, L. Pigno and B. Smith, Hardy’s inequality and the norm of exponential sums. Ann. of Math. (2) 113 (1981), no. 3, 613–618. Zbl0473.42001MR621019
- F. Pappalardi, On the order of finitely generated subgroups of and divisors of . J. Number Theory 57 (1996), 207–222. Zbl0847.11049MR1382747
- A. Sárközy, On sums and products of residues modulo . Acta Arith. 118 (2005), no. 4, 403–409. Zbl1078.11011MR2165553
- T. Schoen and I. Shkredov, Additive properties of multiplicative subgroups of . Quart. J. Math. 63 (2012), no. 3, 713–722. Zbl1271.11014MR2967172
- I. E. Shplarlinski, On a question of Erdős and Graham. Arch. Math. 78 (2002), 445–448. Zbl1034.11012MR1921733
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.