The resolution of the bounded curvature conjecture in general relativity
Sergiu Klainerman[1]; Igor Rodnianski[1]; Jérémie Szeftel[2]
- [1] Department of Mathematics Princeton University Princeton NJ 08544
- [2] Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 75005
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- Volume: 202, Issue: 1, page 1-18
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topKlainerman, Sergiu, Rodnianski, Igor, and Szeftel, Jérémie. "The resolution of the bounded $L^2$ curvature conjecture in general relativity." Séminaire Laurent Schwartz — EDP et applications 202.1 (2014-2015): 1-18. <http://eudml.org/doc/275694>.
@article{Klainerman2014-2015,
abstract = {This paper reports on the recent proof of the bounded $L^2$ curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the $L^2$-norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.},
affiliation = {Department of Mathematics Princeton University Princeton NJ 08544; Department of Mathematics Princeton University Princeton NJ 08544; Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 75005},
author = {Klainerman, Sergiu, Rodnianski, Igor, Szeftel, Jérémie},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity},
language = {eng},
number = {1},
pages = {1-18},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The resolution of the bounded $L^2$ curvature conjecture in general relativity},
url = {http://eudml.org/doc/275694},
volume = {202},
year = {2014-2015},
}
TY - JOUR
AU - Klainerman, Sergiu
AU - Rodnianski, Igor
AU - Szeftel, Jérémie
TI - The resolution of the bounded $L^2$ curvature conjecture in general relativity
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 202
IS - 1
SP - 1
EP - 18
AB - This paper reports on the recent proof of the bounded $L^2$ curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the $L^2$-norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.
LA - eng
KW - Einstein vacuum equations; curvature bounds; causal geometry; quasilinear hyperbolic systems; radius of injectivity
UR - http://eudml.org/doc/275694
ER -
References
top- H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et estimation de Strichartz, Amer. J. Math., 121, 1337–1777, 1999. Zbl0952.35073MR1719798
- H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et effet dispersif, IMRN, 21, 1141–1178, 1999. Zbl0938.35106MR1728676
- Y. C. Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88, 141–225, 1952. Zbl0049.19201MR53338
- E. Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Acad. Sci. (Paris), 174, 593–595, 1922. Zbl48.0854.02
- D. Christodoulou, Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Comm. Pure and Appl. Math, 46, 1131–1220, 1993. Zbl0853.35122MR1225895
- D. Christodoulou, The instability of naked singularities in the gravitational collapse of a scalar field, Ann. of Math., 149, 183–217,1999. Zbl1126.83305MR1680551
- A. Fischer, J. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. I, Comm. Math. Phys. 28, 1–38, 1972. Zbl0247.35082MR309507
- T. J. R. Hughes, T. Kato, J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63, 273–394, 1977. Zbl0361.35046MR420024
- S. Klainerman, M. Machedon, Space-time estimates for null forms and the local existence theorem, Communications on Pure and Applied Mathematics, 46, 1221–1268, 1993. Zbl0803.35095MR1231427
- S. Klainerman, M. Machedon, Finite energy solutions of the Maxwell-Klein-Gordon equations, Duke Math. J. 74, 19–44, 1994. Zbl0818.35123MR1271462
- S. Klainerman, M. Machedon, Finite Energy Solutions for the Yang-Mills Equations in , Annals of Math. 142, 39–119, 1995. Zbl0827.53056MR1338675
- S. Klainerman, PDE as a unified subject, Proceeding of Visions in Mathematics, GAFA 2000 (Tel Aviv 1999). Geom Funct. Anal. 2000, Special Volume , Part 1, 279–315. Zbl1002.35002MR1826256
- S. Klainerman, I. Rodnianski, Improved local well-posedness for quasi-linear wave equations in dimension three, Duke Math. J. 117 (1), 1–124, 2003. Zbl1031.35091MR1962783
- S. Klainerman, I. Rodnianski, Rough solutions to the Einstein vacuum equations, Annals of Math. 161, 1143–1193, 2005. Zbl1089.83006MR2180400
- S. Klainerman, I. Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ. 2 (2), 279–291, 2005. Zbl1284.58018MR2151111
- S. Klainerman, I. Rodnianski, Casual geometry of Einstein vacuum space-times with finite curvature flux, Inventiones159, 437–529, 2005. Zbl1136.58018MR2125732
- S. Klainerman, I. Rodnianski, Sharp trace theorems on null hypersurfaces, GAFA 16 (1), 164–229, 2006. Zbl1206.35081MR2221255
- S. Klainerman, I. Rodnianski, A geometric version of Littlewood-Paley theory, GAFA 16 (1), 126–163, 2006. Zbl1206.35080MR2221254
- S. Klainerman, I. Rodnianski, On a break-down criterion in General Relativity, J. Amer. Math. Soc. 23, 345–382, 2010. Zbl1203.35084MR2601037
- S. Klainerman, I. Rodnianski, J. Szeftel, The Bounded Curvature Conjecture, http://arxiv.org/abs/1204.1767, 91 p, 2012. Zbl1330.53089
- J. Krieger, W. Schlag, Concentration compactness for critical wave maps, Monographs of the European Mathematical Society, 2012. Zbl06004782MR2895939
- H. Lindblad, Counterexamples to local existence for quasilinear wave equations, Amer. J. Math. 118 (1), 1–16, 1996. Zbl0855.35080MR1375301
- H. Lindblad, I. Rodnianski, The weak null condition for the Einstein vacuum equations, C. R. Acad. Sci. 336, 901–906, 2003. Zbl1045.35101MR1994592
- D. Parlongue, An integral breakdown criterion for Einstein vacuum equations in the case of asymptotically flat spacetimes, eprint1004.4309, 88 p, 2010.
- F. Planchon, I. Rodnianski, Uniqueness in general relativity, preprint.
- G. Ponce, T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. PDE 17, 169–177, 1993. Zbl0803.35096MR1211729
- H. F. Smith, A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble) 48, 797–835, 1998. Zbl0974.35068MR1644105
- H.F. Smith, D. Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. 162, 291–366, 2005. Zbl1098.35113MR2178963
- S. Sobolev, Méthodes nouvelles pour résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales, Matematicheskii Sbornik, 1 (43), 31–79, 1936. Zbl0014.05902
- E. Stein, Harmonic Analysis, Princeton University Press, 1993. Zbl0821.42001MR1232192
- J. Sterbenz, D. Tataru, Regularity of Wave-Maps in dimension , Comm. Math. Phys. 298 (1), 231–264, 2010. Zbl1218.35057MR2657818
- J. Sterbenz, D. Tataru, Energy dispersed large data wave maps in dimensions, Comm. Math. Phys. 298 (1), 139–230, 2010. Zbl1218.35129MR2657817
- J. Szeftel, Parametrix for wave equations on a rough background I: Regularity of the phase at initial time, http://arxiv.org/abs/1204.1768, 145 p, 2012.
- J. Szeftel, Parametrix for wave equations on a rough background II: Construction of the parametrix and control at initial time, http://arxiv.org/abs/1204.1769, 84 p, 2012.
- J. Szeftel, Parametrix for wave equations on a rough background III: Space-time regularity of the phase, http://arxiv.org/abs/1204.1770, 276 p, 2012.
- J. Szeftel, Parametrix for wave equations on a rough background IV: Control of the error term, http://arxiv.org/abs/1204.1771, 284 p, 2012.
- J. Szeftel, Sharp Strichartz estimates for the wave equation on a rough background, http://arxiv.org/abs/1301.0112, 30 p, 2013.
- T. Tao, Global regularity of wave maps I–VII, preprints.
- D. Tataru, Local and global results for Wave Maps I, Comm. PDE 23, 1781–1793, 1998. Zbl0914.35083MR1641721
- D. Tataru. Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation, Amer. J. Math. 122, 349–376, 2000. Zbl0959.35125MR1749052
- D. Tataru, Strichartz estimates for second order hyperbolic operators with non smooth coefficients, J.A.M.S. 15 (2), 419–442, 2002. Zbl0990.35027MR1887639
- Q. Wang, Improved breakdown criterion for Einstein vacuum equation in CMC gauge, Comm. Pure Appl. Math. 65 (1), 21–76, 2012. Zbl1248.83009MR2846637
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.