Global minimal models for endomorphisms of projective space
Clayton Petsche[1]; Brian Stout[2]
- [1] Department of Mathematics Oregon State University Corvallis OR 97331 U.S.A.
- [2] Ph.D. Program in Mathematics CUNY Graduate Center 365 Fifth Avenue New York, NY 10016-4309 U.S.A.
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 3, page 813-823
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topPetsche, Clayton, and Stout, Brian. "Global minimal models for endomorphisms of projective space." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 813-823. <http://eudml.org/doc/275701>.
@article{Petsche2014,
abstract = {We prove the existence of global minimal models for endomorphisms $\phi :\mathbb\{P\}^N\rightarrow \mathbb\{P\}^N$ of projective space defined over the field of fractions of a principal ideal domain.},
affiliation = {Department of Mathematics Oregon State University Corvallis OR 97331 U.S.A.; Ph.D. Program in Mathematics CUNY Graduate Center 365 Fifth Avenue New York, NY 10016-4309 U.S.A.},
author = {Petsche, Clayton, Stout, Brian},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {813-823},
publisher = {Société Arithmétique de Bordeaux},
title = {Global minimal models for endomorphisms of projective space},
url = {http://eudml.org/doc/275701},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Petsche, Clayton
AU - Stout, Brian
TI - Global minimal models for endomorphisms of projective space
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 813
EP - 823
AB - We prove the existence of global minimal models for endomorphisms $\phi :\mathbb{P}^N\rightarrow \mathbb{P}^N$ of projective space defined over the field of fractions of a principal ideal domain.
LA - eng
UR - http://eudml.org/doc/275701
ER -
References
top- A. Borel, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math., 16, (1963), 5–30. Zbl0135.08902MR202718
- N. Bruin et A. Molnar, Minimal models for rational functions in a dynamical setting, LMS J. Comp. Math., 15, (2012), 400–417. Zbl1300.37051MR3015733
- C. C. Cheng, J. H. McKay et S. S. Wang, A chain rule for multivariable resultants, Proc. Amer. Math. Soc., 123, (1995), 4, 1037–1047. Zbl0845.12001MR1227515
- S. Lang, Algebra, third ed, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, (2002). Zbl0984.00001MR1878556
- C. Petsche, Critically separable rational maps in families, Comp. Math., 148, (2012), 6, 1880–1896. Zbl1302.37061MR2999309
- J. H. Silverman, The arithmetic of dynamical systems. Graduate Texts in Mathematics 241, Springer-Verlag, New York, (2007). Zbl1130.37001MR2316407
- J. H. Silverman, The arithmetic of elliptic curves, second ed, Graduate Texts in Mathematics, 106, Springer, Dordrecht, (2009). Zbl1194.11005MR2514094
- B. Stout, A dynamical Shafarevich theorem for twists of rational morphisms, Preprint (2013), http://arxiv.org/abs/1308.4992 Zbl06360641MR3273498
- L. Szpiro et T. J. Tucker, A Shafarevich-Faltings theorem for rational functions, Pure Appl. Math. Q. 4, (2008), 3, 715–728. Zbl1168.14020MR2435841
- B. van der Waerden, Modern Algebra Vol. II, Frederick Ungar Publishing Co., New York, (1949). Zbl0039.00902MR29363
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.