About global existence and asymptotic behavior for two dimensional gravity water waves

Thomas Alazard[1]

  • [1] Département de Mathématiques et Applications École normale supérieure et CNRS UMR 8553 45, rue d’Ulm F-75230 Paris, France

Séminaire Laurent Schwartz — EDP et applications (2012-2013)

  • Volume: 2012-2013, page 1-16
  • ISSN: 2266-0607

Abstract

top
The main result of this talk is a global existence theorem for the water waves equation with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an asymptotic description in physical coordinates of the solution, which shows that modified scattering holds.The proof is based on a bootstrap argument involving L 2 and L estimates. The L 2 bounds are proved in the paper [5]. They rely on a normal forms paradifferential method allowing one to obtain energy estimates on the Eulerian formulation of the water waves equation. The uniform bounds, and the proof of the global existence result, are presented in [4]. These uniform bounds are proved interpreting the equation in a semi-classical way, and combining Klainerman vector fields with the description of the solution in terms of semi-classical lagrangian distributions.

How to cite

top

Alazard, Thomas. "About global existence and asymptotic behavior for two dimensional gravity water waves." Séminaire Laurent Schwartz — EDP et applications 2012-2013 (2012-2013): 1-16. <http://eudml.org/doc/275706>.

@article{Alazard2012-2013,
abstract = {The main result of this talk is a global existence theorem for the water waves equation with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an asymptotic description in physical coordinates of the solution, which shows that modified scattering holds.The proof is based on a bootstrap argument involving $L^2$ and $L^\infty $ estimates. The $L^2$ bounds are proved in the paper [5]. They rely on a normal forms paradifferential method allowing one to obtain energy estimates on the Eulerian formulation of the water waves equation. The uniform bounds, and the proof of the global existence result, are presented in [4]. These uniform bounds are proved interpreting the equation in a semi-classical way, and combining Klainerman vector fields with the description of the solution in terms of semi-classical lagrangian distributions.},
affiliation = {Département de Mathématiques et Applications École normale supérieure et CNRS UMR 8553 45, rue d’Ulm F-75230 Paris, France},
author = {Alazard, Thomas},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {incompressible Euler equations; global existence theorem; water waves equation; asymptotic description},
language = {eng},
pages = {1-16},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {About global existence and asymptotic behavior for two dimensional gravity water waves},
url = {http://eudml.org/doc/275706},
volume = {2012-2013},
year = {2012-2013},
}

TY - JOUR
AU - Alazard, Thomas
TI - About global existence and asymptotic behavior for two dimensional gravity water waves
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2012-2013
SP - 1
EP - 16
AB - The main result of this talk is a global existence theorem for the water waves equation with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an asymptotic description in physical coordinates of the solution, which shows that modified scattering holds.The proof is based on a bootstrap argument involving $L^2$ and $L^\infty $ estimates. The $L^2$ bounds are proved in the paper [5]. They rely on a normal forms paradifferential method allowing one to obtain energy estimates on the Eulerian formulation of the water waves equation. The uniform bounds, and the proof of the global existence result, are presented in [4]. These uniform bounds are proved interpreting the equation in a semi-classical way, and combining Klainerman vector fields with the description of the solution in terms of semi-classical lagrangian distributions.
LA - eng
KW - incompressible Euler equations; global existence theorem; water waves equation; asymptotic description
UR - http://eudml.org/doc/275706
ER -

References

top
  1. T. Alazard, N. Burq, and C. Zuily. On the Cauchy problem for gravity water waves. http://arxiv.org/abs/1212.0626. Zbl1308.35195MR2762387
  2. T. Alazard, N. Burq, and C. Zuily. On the water-wave equations with surface tension. Duke Math. J., 158(3):413–499, 2011. Zbl1258.35043MR2805065
  3. T. Alazard, N. Burq, and C. Zuily. The water-wave equations: from Zakharov to Euler. In Studies in Phase Space Analysis with Applications to PDEs, pages 1–20. Springer, 2013. Zbl1273.35220
  4. T. Alazard and J.-M. Delort. Global solutions and asymptotic behavior for two dimensional gravity water waves. Preprint 2013. Zbl06543142
  5. T. Alazard and J.-M. Delort. Sobolev estimates for two dimensional gravity water waves. Preprint, 2013. Zbl06538885
  6. T. Alazard and G. Métivier. Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Comm. Partial Differential Equations, 34(10-12):1632–1704, 2009. Zbl1207.35082MR2581986
  7. S. Alinhac. Paracomposition et opérateurs paradifférentiels. Comm. Partial Differential Equations, 11(1):87–121, 1986. Zbl0596.47023MR814548
  8. B. Alvarez-Samaniego and D. Lannes. Large time existence for 3D water-waves and asymptotics. Invent. Math., 171(3):485–541, 2008. Zbl1131.76012MR2372806
  9. T. B. Benjamin and P. J. Olver. Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech., 125:137–185, 1982. Zbl0511.76020MR688749
  10. K. Beyer and M. Günther. On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci., 21(12):1149–1183, 1998. Zbl0916.35141MR1637554
  11. A. L. Cauchy. Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie. p.5-318. Mémoires présentés par divers savants à l’Académie royale des sciences de l’Institut de France et imprimés par son ordre. Sciences mathématiques et physiques. Tome I, imprimé par autorisation du Roi à l’Imprimerie royale; 1827. Disponible sur le site http://mathdoc.emath.fr/. 
  12. R. M. Chen, J. L. Marzuola, D. Spirn, and J. D. Wright. On the regularity of the flow map for the gravity-capillary equations. J. Funct. Anal., 264(3):752–782, 2013. Zbl1270.35159MR3003736
  13. A. Córdoba, D. Córdoba, and F. Gancedo. Interface evolution: water waves in 2-D. Adv. Math., 223(1):120–173, 2010. Zbl1183.35276MR2563213
  14. D. Coutand and S. Shkoller. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc., 20(3):829–930 (electronic), 2007. Zbl1123.35038MR2291920
  15. W. Craig. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations, 10(8):787–1003, 1985. Zbl0577.76030MR795808
  16. W. Craig. Nonstrictly hyperbolic nonlinear systems. Math. Ann., 277(2):213–232, 1987. Zbl0614.35060MR886420
  17. W. Craig. Birkhoff normal forms for water waves. In Mathematical problems in the theory of water waves (Luminy, 1995), volume 200 of Contemp. Math., pages 57–74. Amer. Math. Soc., Providence, RI, 1996. Zbl0953.76009MR1410500
  18. W. Craig, U. Schanz, and C. Sulem. The modulational regime of three-dimensional water waves and the Davey-Stewartson system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 14(5):615–667, 1997. Zbl0892.76008MR1470784
  19. W. Craig and C. Sulem. Numerical simulation of gravity waves. J. Comput. Phys., 108(1):73–83, 1993. Zbl0778.76072MR1239970
  20. J.-M. Delort. Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension 1. Ann. Sci. École Norm. Sup. (4), 34(1), 2001. Erratum : Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 335–345. Zbl1109.35095MR1833089
  21. P. Germain, N. Masmoudi, and J. Shatah. Global existence for capillary water waves. http://arxiv.org/abs/1210.1601. Zbl1314.35100
  22. P. Germain, N. Masmoudi, and J. Shatah. Global solutions for the gravity water waves equation in dimension 3. Ann. of Math. (2), 175(2):691–754, 2012. Zbl1241.35003MR2993751
  23. N. Hayashi and P. I. Naumkin. Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities. Int. J. Pure Appl. Math., 3(3):255–273, 2002. Zbl1018.35070MR1938962
  24. L. Hörmander. Lectures on nonlinear hyperbolic differential equations, volume 26 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 1997. Zbl0881.35001MR1466700
  25. A. Ionescu and F. Pusateri. Global solutions for the gravity water waves system in 2d. http://arxiv.org/abs/1303.5357. Zbl1325.35151
  26. A. Ionescu and F. Pusateri. Nonlinear fractional Schrödinger equations in one dimension. http://arxiv.org/abs/1209.4943. Zbl1304.35749
  27. G. Iooss and P. Plotnikov. Multimodal standing gravity waves: a completely resonant system. J. Math. Fluid Mech., 7(suppl. 1):S110–S126, 2005. Zbl1065.35051MR2126133
  28. G. Iooss and P. I. Plotnikov. Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Amer. Math. Soc., 200(940):viii+128, 2009. Zbl1172.76005MR2529006
  29. S. Klainerman. Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Comm. Pure Appl. Math., 38(5):631–641, 1985. Zbl0597.35100MR803252
  30. S. Klainerman. Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math., 38(3):321–332, 1985. Zbl0635.35059MR784477
  31. D. Lannes. Space time resonances [after Germain, Masmoudi, Shatah]. Séminaire BOURBAKI 64ème année, 2011-2012, no 1053. Zbl1304.35006
  32. D. Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605–654 (electronic), 2005. Zbl1069.35056MR2138139
  33. D. Lannes. A Stability Criterion for Two-Fluid Interfaces and Applications. Arch. Ration. Mech. Anal., 208(2):481–567, 2013. Zbl1278.35194MR3035985
  34. D. Lannes. The water waves problem: mathematical analysis and asymptotics. Mathematical Surveys and Monographs, 188, 2013. Zbl06168816MR3060183
  35. H. Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2), 162(1):109–194, 2005. Zbl1095.35021MR2178961
  36. N. Masmoudi and F. Rousset. Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations. http://arxiv.org/abs/1202.0657. Zbl1286.76026
  37. V. I. Nalimov. The Cauchy-Poisson problem. Dinamika Splošn. Sredy, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami):104–210, 254, 1974. MR609882
  38. J. Shatah. Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math., 38(5):685–696, 1985. Zbl0597.35101MR803256
  39. J. Shatah and C. Zeng. Geometry and a priori estimates for free boundary problems of the Euler equation. Comm. Pure Appl. Math., 61(5):698–744, 2008. Zbl1174.76001MR2388661
  40. J. Shatah and C. Zeng. A priori estimates for fluid interface problems. Comm. Pure Appl. Math., 61(6):848–876, 2008. Zbl1143.35347MR2400608
  41. M. Shinbrot. The initial value problem for surface waves under gravity. I. The simplest case. Indiana Univ. Math. J., 25(3):281–300, 1976. Zbl0329.76016MR403400
  42. C. Sulem and P.-L. Sulem. The nonlinear Schrödinger equation, volume 139 of Applied Mathematical Sciences. Springer-Verlag, New York, 1999. Self-focusing and wave collapse. Zbl0928.35157MR1696311
  43. S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math., 130(1):39–72, 1997. Zbl0892.76009MR1471885
  44. S. Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 12(2):445–495, 1999. Zbl0921.76017MR1641609
  45. S. Wu. Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177(1):45–135, 2009. Zbl1181.35205MR2507638
  46. S. Wu. Global wellposedness of the 3-D full water wave problem. Invent. Math., 184(1):125–220, 2011. Zbl1221.35304MR2782254
  47. H. Yosihara. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci., 18(1):49–96, 1982. Zbl0493.76018MR660822
  48. V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190–194, 1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.