Low regularity Cauchy theory for the water-waves problem: canals and swimming pools

T. Alazard[1]; N. Burq[2]; C. Zuily[3]

  • [1] Département de Mathématiques, UMR 8553 du CNRS, Ecole Normale Supérieure, 45, rue d’Ulm 75005 Paris Cedex, France
  • [2] Laboratoire de Mathématiques d’Orsay, UMR 8628 du CNRS, Université Paris-Sud, 91405 Orsay Cedex, France et Département de Mathématiques, UMR 8553 du CNRS, Ecole Normale Supérieure, 45, rue d’Ulm 75005 Paris Cedex, France
  • [3] Laboratoire de Mathématiques d’Orsay, UMR 8628 du CNRS, Université Paris-Sud, 91405 Orsay Cedex, France

Journées Équations aux dérivées partielles (2011)

  • page 1-20
  • ISSN: 0752-0360

Abstract

top
The purpose of this talk is to present some recent results about the Cauchy theory of the gravity water waves equations (without surface tension). In particular, we clarify the theory as well in terms of regularity indexes for the initial conditions as fin terms of smoothness of the bottom of the domain (namely no regularity assumption is assumed on the bottom). Our main result is that, following the approach developed in [1, 2], after suitable para-linearizations, the system can be arranged into an explicit symmetric system of quasilinear waves equation type, and consequently can be solved at the usual levels of regularity (initial data in H s , s > 1 + d / 2 ). In particular, the system can be solved for initial surfaces having undounded curvature. As another illustration of this reduction, we show that in fact following the analysis by Bahouri-Chemin and Tataru for quasi-linear wave equations, using Strichartz estimates, the regularity threshold can be further lowered, which allows to obtain well posedness for non lipschitz initial velocity fields. We also take benefit from our low regularity result and an elementary (though seemingly yet unknown) observation to solve a question raised by Boussinesq on the water-wave system in a canal.

How to cite

top

Alazard, T., Burq, N., and Zuily, C.. "Low regularity Cauchy theory for the water-waves problem: canals and swimming pools." Journées Équations aux dérivées partielles (2011): 1-20. <http://eudml.org/doc/219839>.

@article{Alazard2011,
abstract = {The purpose of this talk is to present some recent results about the Cauchy theory of the gravity water waves equations (without surface tension). In particular, we clarify the theory as well in terms of regularity indexes for the initial conditions as fin terms of smoothness of the bottom of the domain (namely no regularity assumption is assumed on the bottom). Our main result is that, following the approach developed in [1, 2], after suitable para-linearizations, the system can be arranged into an explicit symmetric system of quasilinear waves equation type, and consequently can be solved at the usual levels of regularity (initial data in $H^s, s&gt;1+d/2$). In particular, the system can be solved for initial surfaces having undounded curvature. As another illustration of this reduction, we show that in fact following the analysis by Bahouri-Chemin and Tataru for quasi-linear wave equations, using Strichartz estimates, the regularity threshold can be further lowered, which allows to obtain well posedness for non lipschitz initial velocity fields. We also take benefit from our low regularity result and an elementary (though seemingly yet unknown) observation to solve a question raised by Boussinesq on the water-wave system in a canal.},
affiliation = {Département de Mathématiques, UMR 8553 du CNRS, Ecole Normale Supérieure, 45, rue d’Ulm 75005 Paris Cedex, France; Laboratoire de Mathématiques d’Orsay, UMR 8628 du CNRS, Université Paris-Sud, 91405 Orsay Cedex, France et Département de Mathématiques, UMR 8553 du CNRS, Ecole Normale Supérieure, 45, rue d’Ulm 75005 Paris Cedex, France; Laboratoire de Mathématiques d’Orsay, UMR 8628 du CNRS, Université Paris-Sud, 91405 Orsay Cedex, France},
author = {Alazard, T., Burq, N., Zuily, C.},
journal = {Journées Équations aux dérivées partielles},
keywords = {Cauchy theory; Euler equations; water-wave system},
language = {eng},
month = {6},
pages = {1-20},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Low regularity Cauchy theory for the water-waves problem: canals and swimming pools},
url = {http://eudml.org/doc/219839},
year = {2011},
}

TY - JOUR
AU - Alazard, T.
AU - Burq, N.
AU - Zuily, C.
TI - Low regularity Cauchy theory for the water-waves problem: canals and swimming pools
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 20
AB - The purpose of this talk is to present some recent results about the Cauchy theory of the gravity water waves equations (without surface tension). In particular, we clarify the theory as well in terms of regularity indexes for the initial conditions as fin terms of smoothness of the bottom of the domain (namely no regularity assumption is assumed on the bottom). Our main result is that, following the approach developed in [1, 2], after suitable para-linearizations, the system can be arranged into an explicit symmetric system of quasilinear waves equation type, and consequently can be solved at the usual levels of regularity (initial data in $H^s, s&gt;1+d/2$). In particular, the system can be solved for initial surfaces having undounded curvature. As another illustration of this reduction, we show that in fact following the analysis by Bahouri-Chemin and Tataru for quasi-linear wave equations, using Strichartz estimates, the regularity threshold can be further lowered, which allows to obtain well posedness for non lipschitz initial velocity fields. We also take benefit from our low regularity result and an elementary (though seemingly yet unknown) observation to solve a question raised by Boussinesq on the water-wave system in a canal.
LA - eng
KW - Cauchy theory; Euler equations; water-wave system
UR - http://eudml.org/doc/219839
ER -

References

top
  1. Thomas Alazard and Guy Métivier. Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Comm. Partial Differential Equations, 34(10-12):1632–1704, 2009. Zbl1207.35082MR2581986
  2. Thomas Alazard, Nicolas Burq, and Claude Zuily. On the water-wave equations with surface tension. Duke Math. J., 158(3):413–499, 2011. Zbl1258.35043MR2805065
  3. Thomas Alazard, Nicolas Burq, and Claude Zuily. Strichartz estimates for water waves. Ann. Sci. Éc. Norm. Supér. (4), to appear. Zbl1260.35140MR2762387
  4. Serge Alinhac. Paracomposition et opérateurs paradifférentiels. Comm. Partial Differential Equations, 11(1):87–121, 1986. Zbl0596.47023MR814548
  5. Serge Alinhac. Interaction d’ondes simples pour des équations complètement non-linéaires. Ann. Sci. École Norm. Sup. (4), 21(1):91–132, 1988. Zbl0665.35051MR944103
  6. Serge Alinhac. Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Differential Equations, 14(2):173–230, 1989. Zbl0692.35063MR976971
  7. Borys Alvarez-Samaniego and David Lannes. Large time existence for 3D water-waves and asymptotics. Invent. Math., 171(3):485–541, 2008. Zbl1131.76012MR2372806
  8. David M. Ambrose and Nader Masmoudi. The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math., 58(10):1287–1315, 2005. Zbl1086.76004MR2162781
  9. David M. Ambrose and Nader Masmoudi, The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J., 58 no. 2: 479521, 2009, Zbl1172.35058MR2514378
  10. David M. Ambrose and Nader Masmoudi, Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci. 5 no. 2: 391430, 2007 Zbl1130.76016MR2334849
  11. Hajer Bahouri and Jean-Yves Chemin. Équations d’ondes quasilinéaires et estimations de Strichartz. Amer. J. Math., 121(6):1337–1377, 1999. Zbl0952.35073MR1719798
  12. Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011. Zbl1227.35004MR2768550
  13. Claude Bardos and David Lannes. Mathematics for 2d interfaces. A paraître dans Panorama et Synthèses. Zbl1291.35208
  14. J. Thomas Beale, Thomas Y. Hou, and John S. Lowengrub. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math., 46(9):1269–1301, 1993. Zbl0796.76041MR1231428
  15. Klaus Beyer and Matthias Günther. On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci., 21(12):1149–1183, 1998. Zbl0916.35141MR1637554
  16. Matthew Blair. Strichartz estimates for wave equations with coefficients of Sobolev regularity. Comm. Partial Differential Equations, 31(4-6):649–688, 2006. Zbl1098.35036MR2233036
  17. Jerry L. Bona, David Lannes, and Jean-Claude. Saut. Asymptotic models for internal waves. J. Math. Pures Appl. (9), 89(6):538–566, 2008. Zbl1138.76028MR2424620
  18. Jean-Michel Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4), 14(2):209–246, 1981. Zbl0495.35024MR631751
  19. Boussinesq, J. Sur une importante simplification de la théorie des ondes que produisent, à la surface d’un liquide, l’emersion d’un solide ou l’impulsion d’un coup de vent. Ann. Sci. École Norm. Sup. (3), 27, 942, 1910. Zbl41.0841.01
  20. Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math., 126(3):569–605, 2004. Zbl1067.58027MR2058384
  21. Jean-Yves Chemin. Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires. Duke Math. J., 56(3):431–469, 1988. Zbl0676.35009
  22. Jean-Yves Chemin. Perfect incompressible fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Zbl0927.76002
  23. Hans Christianson, Vera Hur and Gigliola Staffilani, Strichartz estimates for the water-wave problem with surface tension. Comm. Partial Differential Equations 35, no. 12: 21952252, 2010. Zbl1280.35107MR2763354
  24. Demetrios Christodoulou and Hans Lindblad. On the motion of the free surface of a liquid. Comm. Pure Appl. Math., 53(12):1536–1602, 2000. Zbl1031.35116MR1780703
  25. Angel Castro, Diego Córdoba, Charles, L. Fefferman, Francisco Gancedo and Maria López-Fernández Turning waves and breakdown for incompressible flows. To appear, Annals of Math., 2011. MR2792311
  26. Angel Castro, Diego Córdoba, Charles, L. Fefferman, Francisco Gancedo and Javier Gómez-Serrano Splash singularity for water waves. preprint, 2011 
  27. Daniel Coutand and Steve Shkoller. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc., 20(3):829–930 (electronic), 2007. Zbl1123.35038MR2291920
  28. W. Craig, C. Sulem, and P.-L. Sulem. Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity, 5(2):497–522, 1992. Zbl0742.76012MR1158383
  29. Walter Craig. An existence theory for water waves and the Boussinesq and Korteweg-deVries scaling limits. Communications in Partial Differential Equations, 10(8):787–1003, 1985. Zbl0577.76030MR795808
  30. Walter Craig, Ulrich Schanz, and Catherine Sulem. The modulational regime of three-dimensional water waves and the Davey-Stewartson system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 14(5):615–667, 1997. Zbl0892.76008MR1470784
  31. Walter Craig and C.Eugene WayneKre?g. Mathematical aspects of surface waves on water. Uspekhi Mat. Nauk 62:3 (375), 95–116, 2007 translation in Russian Math. Surveys 62 (3), 453473, 2007 Zbl1203.76023MR2355420
  32. Pierre Germain, Nader Masmoudi, and Jalal Shatah. Global solutions for the gravity water waves equation in dimension 3. Prépulication 2009. Zbl1177.35168MR2542891
  33. Matthias Günther and Georg Prokert. On a Hele-Shaw type domain evolution with convected surface energy density: the third-order problem. SIAM J. Math. Anal., 38(4):1154–1185 (electronic), 2006. Zbl1126.35110MR2274478
  34. Lars Hörmander. The boundary problems of physical geodesy. Arch. Rational Mech. Anal., 62(1):1–52, 1976. Zbl0331.35020MR602181
  35. Lars Hörmander. Lectures on nonlinear hyperbolic differential equations, volume 26 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 1997. Zbl0881.35001MR1466700
  36. Thomas Y. Hou, Zhen-huan Teng, and Pingwen Zhang. Well-posedness of linearized motion for 3 -D water waves far from equilibrium. Comm. Partial Differential Equations, 21(9-10):1551–1585, 1996. Zbl0874.76014MR1410841
  37. Tatsuo Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom. (English summary) Comm. Partial Differential Equations 32, no. 1-3 : 3785, 2007. Zbl1136.35081MR2304142
  38. Tatsuo Iguchi, Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac. 44,no. 2: 219241, 2001. Zbl1145.76328MR1865389
  39. Gérard Iooss and Pavel Plotnikov, Asymmetrical three-dimensional travelling gravity waves. Arch. Ration. Mech. Anal. 200, no. 3: 789880, 2011, Zbl1231.35169MR2796133
  40. David Lannes. A stability criterion for two-fluid interfaces and applications. Prépublication 2010. 
  41. David Lannes. Water waves: mathematical analysis and asymptotics. to appear. Zbl06168816
  42. David Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3):605–654 (electronic), 2005. Zbl1069.35056MR2138139
  43. Gilles Lebeau Singularités des solutions d’équations d’ondes semi-linéaires. Ann. Sci. École Norm. Sup. (4) 25- 2: 201231, 1992. Zbl0776.35088MR1169352
  44. Gilles Lebeau. Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM Control Optim. Calc. Var., 8:801–825 (electronic), 2002. A tribute to J. L. Lions. Zbl1070.35504MR1932974
  45. Hans Lindblad. Well posedness for the motion of a compressible liquid with free surface boundary. Comm. Math. Phys., 260(2):319–392, 2005. Zbl1094.35088MR2177323
  46. Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2), 162(1):109–194, 2005. Zbl1095.35021MR2178961
  47. Vladimir G. Maz’ya and Tatyana O. Shaposhnikova. Theory of Sobolev multipliers, volume 337 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. With applications to differential and integral operators. Zbl1157.46001MR2457601
  48. Guy Métivier. Para-differential calculus and applications to the Cauchy problem for nonlinear systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series. Edizioni della Normale, Pisa, 2008. Zbl1156.35002MR2418072
  49. Guy Métivier and Kevin Zumbrun. Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc., 175(826):vi+107, 2005. Zbl1074.35066MR2130346
  50. Yves Meyer. Remarques sur un théorème de J.-M. Bony. In Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), number suppl. 1, pages 1–20, 1981. Zbl0473.35021MR639462
  51. V. I. Nalimov. The Cauchy-Poisson problem. Dinamika Splošn. Sredy, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami):104–210, 254, 1974. MR609882
  52. Frédéric Rousset and Nikolay Tzvetkov. Transverse instability of the line solitary water-waves. Prépublication 2009. Zbl1225.35024
  53. John, Reeder and Marvin Shinbrot. Three-dimensional, nonlinear wave interaction in water of constant depth. Nonlinear Anal. 5 (3): 303323, 1981. Zbl0469.76014MR607813
  54. Guido Schneider and C. Eugene Wayne. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math. 53 (12): 14751535, 2000. Zbl1034.76011MR1780702
  55. Ben Schweizer. On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (6): 753781, 2005. Zbl1148.35071MR2172858
  56. Monique Sablé-Tougeron. Régularité microlocale pour des problèmes aux limites non linéaires. Ann. Inst. Fourier (Grenoble), 36(1):39–82, 1986. Zbl0577.35004MR840713
  57. Jalal Shatah and Chongchun Zeng. Geometry and a priori estimates for free boundary problems of the Euler equation. Comm. Pure Appl. Math., 61(5):698–744, 2008. Zbl1174.76001MR2388661
  58. Jalal Shatah and Chongchun Zeng. A priori estimates for fluid interface problems. Comm. Pure Appl. Math., 61(6):848–876, 2008. Zbl1143.35347MR2400608
  59. Hart F. Smith. A parametrix construction for wave equations with C 1 , 1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998. Zbl0974.35068MR1644105
  60. Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Partial Differential Equations 27, no. 7-8: 13371372, 2002. Zbl1010.35015MR1924470
  61. Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math., 122(2):349–376, 2000. Zbl0959.35125MR1749052
  62. Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II. Amer. J. Math., 123(3):385–423, 2001. Zbl0988.35037MR1833146
  63. Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Amer. Math. Soc., 15(2):419–442 (electronic), 2002. Zbl0990.35027MR1887639
  64. Michael E. Taylor. Pseudodifferential operators and nonlinear PDE, volume 100 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1991. Zbl0746.35062MR1121019
  65. Yuri Trakhinin. Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition. Comm. Pure Appl. Math., 62(11):1551–1594, 2009. Zbl1185.35342MR2560044
  66. Sijue Wu. Global well-posedness of the 3-d full water wave problem. Prépulication 2010. Zbl1221.35304
  67. Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math., 130(1):39–72, 1997. Zbl0892.76009MR1471885
  68. Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 12(2):445–495, 1999. Zbl0921.76017MR1641609
  69. Sijue Wu. Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177(1):45–135, 2009. Zbl1181.35205MR2507638
  70. Hideaki Yosihara. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci., 18(1):49–96, 1982. Zbl0493.76018MR660822

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.