Multiple end solutions to the Allen-Cahn equation in ${ℝ}^{2}$

Michał Kowalczyk[1]; Yong Liu[1]; Frank Pacard[2]

• [1] Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS) Universidad de Chile Casilla 170 Correo 3 Santiago Chile
• [2] Centre de Mathématiques Laurent Schwartz and Institut Universitaire de France École Polytechnique 91128 Palaiseau France
• Volume: 7, Issue: 4, page 1-19
• ISSN: 2266-0607

top

Abstract

top
An entire solution of the Allen-Cahn equation $\Delta u=f\left(u\right)$, where $f$ is an odd function and has exactly three zeros at $±1$ and $0$, e.g. $f\left(u\right)=u\left({u}^{2}-1\right)$, is called a $2k$ end solution if its nodal set is asymptotic to $2k$ half lines, and if along each of these half lines the function $u$ looks (up to a multiplication by $-1$) like the one dimensional, odd, heteroclinic solution $H$, of ${H}^{\text{'}\text{'}}=f\left(H\right)$. In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions. Next we move on to study a special class of this solutions with just four ends. A special example is the saddle solutions $U$ whose nodal lines are precisely the straight lines $y=±x$. We describe completely connected components of the moduli space of four end solutions. Finally we establish a uniqueness result which gives a complete classification of these solutions. It says that all four end solutions are continuous deformations of the saddle solution.

How to cite

top

Kowalczyk, Michał, Liu, Yong, and Pacard, Frank. "Multiple end solutions to the Allen-Cahn equation in $\mathbb{R}^2$." Séminaire Laurent Schwartz — EDP et applications 7.4 (2013-2014): 1-19. <http://eudml.org/doc/275715>.

@article{Kowalczyk2013-2014,
abstract = {An entire solution of the Allen-Cahn equation $\Delta u=f(u)$, where $f$ is an odd function and has exactly three zeros at $\pm 1$ and $0$, e.g. $f(u)=u(u^2-1)$, is called a $2k$ end solution if its nodal set is asymptotic to $2k$ half lines, and if along each of these half lines the function $u$ looks (up to a multiplication by $-1$) like the one dimensional, odd, heteroclinic solution $H$, of $H^\{\prime \prime \}=f(H)$. In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions. Next we move on to study a special class of this solutions with just four ends. A special example is the saddle solutions $U$ whose nodal lines are precisely the straight lines $y=\pm x$. We describe completely connected components of the moduli space of four end solutions. Finally we establish a uniqueness result which gives a complete classification of these solutions. It says that all four end solutions are continuous deformations of the saddle solution.},
affiliation = {Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS) Universidad de Chile Casilla 170 Correo 3 Santiago Chile; Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS) Universidad de Chile Casilla 170 Correo 3 Santiago Chile; Centre de Mathématiques Laurent Schwartz and Institut Universitaire de France École Polytechnique 91128 Palaiseau France},
author = {Kowalczyk, Michał, Liu, Yong, Pacard, Frank},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {moduli spaces; saddle solutions},
language = {eng},
number = {4},
pages = {1-19},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Multiple end solutions to the Allen-Cahn equation in $\mathbb\{R\}^2$},
url = {http://eudml.org/doc/275715},
volume = {7},
year = {2013-2014},
}

TY - JOUR
AU - Kowalczyk, Michał
AU - Liu, Yong
AU - Pacard, Frank
TI - Multiple end solutions to the Allen-Cahn equation in $\mathbb{R}^2$
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 7
IS - 4
SP - 1
EP - 19
AB - An entire solution of the Allen-Cahn equation $\Delta u=f(u)$, where $f$ is an odd function and has exactly three zeros at $\pm 1$ and $0$, e.g. $f(u)=u(u^2-1)$, is called a $2k$ end solution if its nodal set is asymptotic to $2k$ half lines, and if along each of these half lines the function $u$ looks (up to a multiplication by $-1$) like the one dimensional, odd, heteroclinic solution $H$, of $H^{\prime \prime }=f(H)$. In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions. Next we move on to study a special class of this solutions with just four ends. A special example is the saddle solutions $U$ whose nodal lines are precisely the straight lines $y=\pm x$. We describe completely connected components of the moduli space of four end solutions. Finally we establish a uniqueness result which gives a complete classification of these solutions. It says that all four end solutions are continuous deformations of the saddle solution.
LA - eng
KW - moduli spaces; saddle solutions
UR - http://eudml.org/doc/275715
ER -

References

top
1. F. Alessio, A. Calamai, and P. Montecchiari. Saddle-type solutions for a class of semilinear elliptic equations. Adv. Differential Equations, 12(4):361–380, 2007. Zbl1193.35058MR2305872
2. L. Ambrosio and X. Cabré. Entire solutions of semilinear elliptic equations in ${\mathbf{R}}^{3}$ and a conjecture of De Giorgi. J. Amer. Math. Soc., 13(4):725–739 (electronic), 2000. Zbl0968.35041MR1775735
3. M. T. Barlow, R. F. Bass, and C. Gui. The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math., 53(8):1007–1038, 2000. Zbl1072.35526MR1755949
4. H. Berestycki, F. Hamel, and R. Monneau. One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J., 103(3):375–396, 2000. Zbl0954.35056MR1763653
5. E. N. Dancer. Stable and finite Morse index solutions on ${\mathbf{R}}^{n}$ or on bounded domains with small diffusion. Trans. Amer. Math. Soc., 357(3):1225–1243 (electronic), 2005. Zbl1145.35369MR2110438
6. H. Dang, P. C. Fife, and L. A. Peletier. Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys., 43(6):984–998, 1992. Zbl0764.35048MR1198672
7. M. del Pino, M. Kowalczyk, and F. Pacard. Moduli space theory for the Allen-Cahn equation in the plane. to appear Transactions AMS, 2010. Zbl1286.35018MR2995371
8. M. del Pino, M. Kowalczyk, F. Pacard, and J. Wei. Multiple-end solutions to the Allen-Cahn equation in ${ℝ}^{2}$. J. Funct. Anal., 258(2):458–503, 2010. Zbl1203.35108MR2557944
9. M. del Pino, M. Kowalczyk, and J. Wei. On De Giorgi’s in dimension $N\ge 9$. Ann. of Math. (2), 174(3):1485–1569, 2011. Zbl1238.35019MR2846486
10. A. Farina. Symmetry for solutions of semilinear elliptic equations in ${\mathbf{R}}^{N}$ and related conjectures. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 10(4):255–265, 1999. Zbl1160.35401MR1767932
11. D. Fischer-Colbrie. On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math., 82(1):121–132, 1985. Zbl0573.53038MR808112
12. N. Ghoussoub and C. Gui. On a conjecture of De Giorgi and some related problems. Math. Ann., 311(3):481–491, 1998. Zbl0918.35046MR1637919
13. C. Gui. Hamiltonian identities for elliptic partial differential equations. J. Funct. Anal., 254(4):904–933, 2008. Zbl1148.35023MR2381198
14. C. Gui. Even Symmetry of Some Entire Solutions to the Allen-Cahn Equation in Two Dimensions. J. Differential Equations, 252(11):5853–5874, 2012. Zbl1250.35078MR2911416
15. H. Karcher. Embedded minimal surfaces derived from Scherk’s examples. Manuscripta Math., 62(1):83–114, 1988. Zbl0658.53006MR958255
16. B. Kostant. The solution to a generalized Toda lattice and representation theory. Adv. in Math., 34(3):195–338, 1979. Zbl0433.22008MR550790
17. M. Kowalczyk and Y. Liu. Nondegeneracy of the saddle solution of the Allen-Cahn equation. Proc. Amer. Math. Soc., 139(12):43–4329, 2011. Zbl1241.35079MR2823077
18. M. Kowalczyk, Y. Liu, and F. Pacard. The classification of four ended solutions to the Allen-Cahn equation on the plane. preprint, 2011. Zbl1287.35031MR3148064
19. M. Kowalczyk, Y. Liu, and F. Pacard. The space of four ended solutions to the Allen-Cahn equation on the plane. Ann. Inst. H. Poincaré Anal. Non Linéaire, 29(5):761–781, 2012. Zbl1254.35219MR2971030
20. R. Kusner, R. Mazzeo, and D. Pollack. The moduli space of complete embedded constant mean curvature surfaces. Geom. Funct. Anal., 6(1):120–137, 1996. Zbl0966.58005MR1371233
21. R. Mazzeo and D. Pollack. Gluing and moduli for noncompact geometric problems. In Geometric theory of singular phenomena in partial differential equations (Cortona, 1995), Sympos. Math., XXXVIII, pages 17–51. Cambridge Univ. Press, Cambridge, 1998. Zbl0976.53065MR1702086
22. R. Mazzeo, D. Pollack, and K. Uhlenbeck. Moduli spaces of singular Yamabe metrics. J. Amer. Math. Soc., 9(2):303–344, 1996. Zbl0849.58012MR1356375
23. W. H. Meeks, III and M. Wolf. Minimal surfaces with the area growth of two planes: the case of infinite symmetry. J. Amer. Math. Soc., 20(2):441–465, 2007. Zbl1115.53008MR2276776
24. J. Moser. Finitely many mass points on the line under the influence of an exponential potential–an integrable system. In Dynamical systems, theory and applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), pages 467–497. Lecture Notes in Phys., Vol. 38. Springer, Berlin, 1975. Zbl0323.70012MR455038
25. A. F. Nikiforov and V. B. Uvarov. Special functions of mathematical physics. Birkhäuser Verlag, Basel, 1988. A unified introduction with applications, Translated from the Russian and with a preface by Ralph P. Boas, With a foreword by A. A. Samarskiĭ. Zbl0624.33001MR922041
26. F. Pacard and J. Wei. Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones. J. Funct. Anal. to appear, 2011. Zbl1281.35046MR3010017
27. J. Pérez and M. Traizet. The classification of singly periodic minimal surfaces with genus zero and Scherk-type ends. Trans. Amer. Math. Soc., 359(3):965–990 (electronic), 2007. Zbl1110.53008MR2262839
28. O. Savin. Regularity of flat level sets in phase transitions. Ann. of Math. (2), 169(1):41–78, 2009. Zbl1180.35499MR2480601
29. M. Schatzman. On the stability of the saddle solution of Allen-Cahn’s equation. Proc. Roy. Soc. Edinburgh Sect. A, 125(6):1241–1275, 1995. Zbl0852.35020MR1363002

NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.