Multiple end solutions to the Allen-Cahn equation in
Michał Kowalczyk[1]; Yong Liu[1]; Frank Pacard[2]
- [1] Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS) Universidad de Chile Casilla 170 Correo 3 Santiago Chile
- [2] Centre de Mathématiques Laurent Schwartz and Institut Universitaire de France École Polytechnique 91128 Palaiseau France
Séminaire Laurent Schwartz — EDP et applications (2013-2014)
- Volume: 7, Issue: 4, page 1-19
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topKowalczyk, Michał, Liu, Yong, and Pacard, Frank. "Multiple end solutions to the Allen-Cahn equation in $\mathbb{R}^2$." Séminaire Laurent Schwartz — EDP et applications 7.4 (2013-2014): 1-19. <http://eudml.org/doc/275715>.
@article{Kowalczyk2013-2014,
abstract = {An entire solution of the Allen-Cahn equation $\Delta u=f(u)$, where $f$ is an odd function and has exactly three zeros at $\pm 1$ and $0$, e.g. $f(u)=u(u^2-1)$, is called a $2k$ end solution if its nodal set is asymptotic to $2k$ half lines, and if along each of these half lines the function $u$ looks (up to a multiplication by $-1$) like the one dimensional, odd, heteroclinic solution $H$, of $H^\{\prime \prime \}=f(H)$. In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions. Next we move on to study a special class of this solutions with just four ends. A special example is the saddle solutions $U$ whose nodal lines are precisely the straight lines $y=\pm x$. We describe completely connected components of the moduli space of four end solutions. Finally we establish a uniqueness result which gives a complete classification of these solutions. It says that all four end solutions are continuous deformations of the saddle solution.},
affiliation = {Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS) Universidad de Chile Casilla 170 Correo 3 Santiago Chile; Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS) Universidad de Chile Casilla 170 Correo 3 Santiago Chile; Centre de Mathématiques Laurent Schwartz and Institut Universitaire de France École Polytechnique 91128 Palaiseau France},
author = {Kowalczyk, Michał, Liu, Yong, Pacard, Frank},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {moduli spaces; saddle solutions},
language = {eng},
number = {4},
pages = {1-19},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Multiple end solutions to the Allen-Cahn equation in $\mathbb\{R\}^2$},
url = {http://eudml.org/doc/275715},
volume = {7},
year = {2013-2014},
}
TY - JOUR
AU - Kowalczyk, Michał
AU - Liu, Yong
AU - Pacard, Frank
TI - Multiple end solutions to the Allen-Cahn equation in $\mathbb{R}^2$
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 7
IS - 4
SP - 1
EP - 19
AB - An entire solution of the Allen-Cahn equation $\Delta u=f(u)$, where $f$ is an odd function and has exactly three zeros at $\pm 1$ and $0$, e.g. $f(u)=u(u^2-1)$, is called a $2k$ end solution if its nodal set is asymptotic to $2k$ half lines, and if along each of these half lines the function $u$ looks (up to a multiplication by $-1$) like the one dimensional, odd, heteroclinic solution $H$, of $H^{\prime \prime }=f(H)$. In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions. Next we move on to study a special class of this solutions with just four ends. A special example is the saddle solutions $U$ whose nodal lines are precisely the straight lines $y=\pm x$. We describe completely connected components of the moduli space of four end solutions. Finally we establish a uniqueness result which gives a complete classification of these solutions. It says that all four end solutions are continuous deformations of the saddle solution.
LA - eng
KW - moduli spaces; saddle solutions
UR - http://eudml.org/doc/275715
ER -
References
top- F. Alessio, A. Calamai, and P. Montecchiari. Saddle-type solutions for a class of semilinear elliptic equations. Adv. Differential Equations, 12(4):361–380, 2007. Zbl1193.35058MR2305872
- L. Ambrosio and X. Cabré. Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi. J. Amer. Math. Soc., 13(4):725–739 (electronic), 2000. Zbl0968.35041MR1775735
- M. T. Barlow, R. F. Bass, and C. Gui. The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math., 53(8):1007–1038, 2000. Zbl1072.35526MR1755949
- H. Berestycki, F. Hamel, and R. Monneau. One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J., 103(3):375–396, 2000. Zbl0954.35056MR1763653
- E. N. Dancer. Stable and finite Morse index solutions on or on bounded domains with small diffusion. Trans. Amer. Math. Soc., 357(3):1225–1243 (electronic), 2005. Zbl1145.35369MR2110438
- H. Dang, P. C. Fife, and L. A. Peletier. Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys., 43(6):984–998, 1992. Zbl0764.35048MR1198672
- M. del Pino, M. Kowalczyk, and F. Pacard. Moduli space theory for the Allen-Cahn equation in the plane. to appear Transactions AMS, 2010. Zbl1286.35018MR2995371
- M. del Pino, M. Kowalczyk, F. Pacard, and J. Wei. Multiple-end solutions to the Allen-Cahn equation in . J. Funct. Anal., 258(2):458–503, 2010. Zbl1203.35108MR2557944
- M. del Pino, M. Kowalczyk, and J. Wei. On De Giorgi’s in dimension . Ann. of Math. (2), 174(3):1485–1569, 2011. Zbl1238.35019MR2846486
- A. Farina. Symmetry for solutions of semilinear elliptic equations in and related conjectures. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 10(4):255–265, 1999. Zbl1160.35401MR1767932
- D. Fischer-Colbrie. On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math., 82(1):121–132, 1985. Zbl0573.53038MR808112
- N. Ghoussoub and C. Gui. On a conjecture of De Giorgi and some related problems. Math. Ann., 311(3):481–491, 1998. Zbl0918.35046MR1637919
- C. Gui. Hamiltonian identities for elliptic partial differential equations. J. Funct. Anal., 254(4):904–933, 2008. Zbl1148.35023MR2381198
- C. Gui. Even Symmetry of Some Entire Solutions to the Allen-Cahn Equation in Two Dimensions. J. Differential Equations, 252(11):5853–5874, 2012. Zbl1250.35078MR2911416
- H. Karcher. Embedded minimal surfaces derived from Scherk’s examples. Manuscripta Math., 62(1):83–114, 1988. Zbl0658.53006MR958255
- B. Kostant. The solution to a generalized Toda lattice and representation theory. Adv. in Math., 34(3):195–338, 1979. Zbl0433.22008MR550790
- M. Kowalczyk and Y. Liu. Nondegeneracy of the saddle solution of the Allen-Cahn equation. Proc. Amer. Math. Soc., 139(12):43–4329, 2011. Zbl1241.35079MR2823077
- M. Kowalczyk, Y. Liu, and F. Pacard. The classification of four ended solutions to the Allen-Cahn equation on the plane. preprint, 2011. Zbl1287.35031MR3148064
- M. Kowalczyk, Y. Liu, and F. Pacard. The space of four ended solutions to the Allen-Cahn equation on the plane. Ann. Inst. H. Poincaré Anal. Non Linéaire, 29(5):761–781, 2012. Zbl1254.35219MR2971030
- R. Kusner, R. Mazzeo, and D. Pollack. The moduli space of complete embedded constant mean curvature surfaces. Geom. Funct. Anal., 6(1):120–137, 1996. Zbl0966.58005MR1371233
- R. Mazzeo and D. Pollack. Gluing and moduli for noncompact geometric problems. In Geometric theory of singular phenomena in partial differential equations (Cortona, 1995), Sympos. Math., XXXVIII, pages 17–51. Cambridge Univ. Press, Cambridge, 1998. Zbl0976.53065MR1702086
- R. Mazzeo, D. Pollack, and K. Uhlenbeck. Moduli spaces of singular Yamabe metrics. J. Amer. Math. Soc., 9(2):303–344, 1996. Zbl0849.58012MR1356375
- W. H. Meeks, III and M. Wolf. Minimal surfaces with the area growth of two planes: the case of infinite symmetry. J. Amer. Math. Soc., 20(2):441–465, 2007. Zbl1115.53008MR2276776
- J. Moser. Finitely many mass points on the line under the influence of an exponential potential–an integrable system. In Dynamical systems, theory and applications (Rencontres, BattelleRes. Inst., Seattle, Wash., 1974), pages 467–497. Lecture Notes in Phys., Vol. 38. Springer, Berlin, 1975. Zbl0323.70012MR455038
- A. F. Nikiforov and V. B. Uvarov. Special functions of mathematical physics. Birkhäuser Verlag, Basel, 1988. A unified introduction with applications, Translated from the Russian and with a preface by Ralph P. Boas, With a foreword by A. A. Samarskiĭ. Zbl0624.33001MR922041
- F. Pacard and J. Wei. Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones. J. Funct. Anal. to appear, 2011. Zbl1281.35046MR3010017
- J. Pérez and M. Traizet. The classification of singly periodic minimal surfaces with genus zero and Scherk-type ends. Trans. Amer. Math. Soc., 359(3):965–990 (electronic), 2007. Zbl1110.53008MR2262839
- O. Savin. Regularity of flat level sets in phase transitions. Ann. of Math. (2), 169(1):41–78, 2009. Zbl1180.35499MR2480601
- M. Schatzman. On the stability of the saddle solution of Allen-Cahn’s equation. Proc. Roy. Soc. Edinburgh Sect. A, 125(6):1241–1275, 1995. Zbl0852.35020MR1363002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.