On Schrödinger maps from to
Robert L. Jerrard; Didier Smets
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 4, page 637-680
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topJerrard, Robert L., and Smets, Didier. "On Schrödinger maps from $T^1$ to $S^2$." Annales scientifiques de l'École Normale Supérieure 45.4 (2012): 637-680. <http://eudml.org/doc/272227>.
@article{Jerrard2012,
abstract = {We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from $T^1$ to $S^2.$ This estimate yields some continuity properties of the flow map for the topology of $L^2(T^1,S^2)$, provided one takes its quotient by the continuous group action of $T^1$ given by translations. We also prove that without taking this quotient, for any $t>0$ the flow map at time $t$ is discontinuous as a map from $\mathcal \{C\}^\infty (T^1,S^2)$, equipped with the weak topology of $H^\{1/2\},$ to the space of distributions $(\mathcal \{C\}^\infty (T^1,\mathbb \{R\}^3))^*.$ The argument relies in an essential way on the link between the Schrödinger map equation and the binormal curvature flow for curves in the euclidean space, and on a new estimate for the latter.},
author = {Jerrard, Robert L., Smets, Didier},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {schrödinger maps; binormal curvature flow},
language = {eng},
number = {4},
pages = {637-680},
publisher = {Société mathématique de France},
title = {On Schrödinger maps from $T^1$ to $S^2$},
url = {http://eudml.org/doc/272227},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Jerrard, Robert L.
AU - Smets, Didier
TI - On Schrödinger maps from $T^1$ to $S^2$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 4
SP - 637
EP - 680
AB - We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from $T^1$ to $S^2.$ This estimate yields some continuity properties of the flow map for the topology of $L^2(T^1,S^2)$, provided one takes its quotient by the continuous group action of $T^1$ given by translations. We also prove that without taking this quotient, for any $t>0$ the flow map at time $t$ is discontinuous as a map from $\mathcal {C}^\infty (T^1,S^2)$, equipped with the weak topology of $H^{1/2},$ to the space of distributions $(\mathcal {C}^\infty (T^1,\mathbb {R}^3))^*.$ The argument relies in an essential way on the link between the Schrödinger map equation and the binormal curvature flow for curves in the euclidean space, and on a new estimate for the latter.
LA - eng
KW - schrödinger maps; binormal curvature flow
UR - http://eudml.org/doc/272227
ER -
References
top- [1] M. Agueh, Gagliardo-Nirenberg inequalities involving the gradient -norm, C. R. Math. Acad. Sci. Paris346 (2008), 757–762. Zbl1149.35329MR2427077
- [2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156. Zbl0787.35097MR1209299
- [3] J. Bourgain, Periodic Korteweg-de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), 115–159. Zbl0891.35138MR1466164
- [4] N. Burq, P. Gérard & N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett.9 (2002), 323–335. Zbl1003.35113MR1909648
- [5] N.-H. Chang, J. Shatah & K. Uhlenbeck, Schrödinger maps, Comm. Pure Appl. Math.53 (2000), 590–602. Zbl1028.35134MR1737504
- [6] M. Christ, J. Colliander & T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math.125 (2003), 1235–1293. Zbl1048.35101MR2018661
- [7] W. Ding & Y. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A44 (2001), 1446–1464. Zbl1019.53032MR1877231
- [8] J. Hadamard, Sur quelques applications de l’indice de Kronecker, in Introduction à la théorie des fonctions d’une variable (J. Tannery, éd.), Hermann, 1910.
- [9] H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech.51 (1972), 477–485. Zbl0237.76010
- [10] R. L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations, Ann. Sc. Norm. Super. Pisa Cl. Sci.1 (2002), 733–768. Zbl1170.35318MR1991001
- [11] R. L. Jerrard & D. Smets, On the motion of a curve by its binormal curvature, preprint arXiv:1109.5483. Zbl1327.53086
- [12] C. E. Kenig, G. Ponce & L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J.106 (2001), 617–633. Zbl1034.35145MR1813239
- [13] S. Kida, A vortex filament moving without change of form, J. Fluid Mech.112 (1981), 397–409. Zbl0484.76030MR639236
- [14] Y. C. Ma & M. J. Ablowitz, The periodic cubic Schrödinger equation, Stud. Appl. Math.65 (1981), 113–158. Zbl0493.35032MR628138
- [15] H. McGahagan, Some existence and uniqueness results for Schroedinger maps and Landau-Lifshitz-Maxwell equations, Thèse, New York University, 2004. MR2706443
- [16] H. McGahagan, An approximation scheme for Schrödinger maps, Comm. Partial Differential Equations32 (2007), 375–400. Zbl1122.35138MR2304153
- [17] L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett.16 (2009), 111–120. Zbl1180.35487MR2480565
- [18] A. Nahmod, J. Shatah, L. Vega & C. Zeng, Schrödinger maps and their associated frame systems, Int. Math. Res. Not. 2007 (2007), Art. ID rnm088, 1–29. Zbl1142.35087
- [19] J. Shatah, Regularity results for semilinear and geometric wave equations, in Mathematics of gravitation, Part I (Warsaw, 1996), Banach Center Publ. 41, Polish Acad. Sci., 1997, 69–90. Zbl0895.35065MR1466509
- [20] P.-L. Sulem, C. Sulem & C. Bardos, On the continuous limit for a system of classical spins, Comm. Math. Phys.107 (1986), 431–454. Zbl0614.35087MR866199
- [21] V. E. Zakharov & A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), 118–134; English translation: Soviet Physics JETP 34 (1972), 62–69. MR406174
- [22] Y. L. Zhou & B. L. Guo, Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. Sinica Ser. A27 (1984), 799–811. Zbl0571.35058MR795163
- [23] Y. L. Zhou, B. L. Guo & S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A34 (1991), 257–266. Zbl0752.35074MR1110342
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.