On Schrödinger maps from T 1 to  S 2

Robert L. Jerrard; Didier Smets

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 4, page 637-680
  • ISSN: 0012-9593

Abstract

top
We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from T 1 to  S 2 . This estimate yields some continuity properties of the flow map for the topology of  L 2 ( T 1 , S 2 ) , provided one takes its quotient by the continuous group action of  T 1 given by translations. We also prove that without taking this quotient, for any t > 0 the flow map at time t is discontinuous as a map from 𝒞 ( T 1 , S 2 ) , equipped with the weak topology of  H 1 / 2 , to the space of distributions ( 𝒞 ( T 1 , 3 ) ) * . The argument relies in an essential way on the link between the Schrödinger map equation and the binormal curvature flow for curves in the euclidean space, and on a new estimate for the latter.

How to cite

top

Jerrard, Robert L., and Smets, Didier. "On Schrödinger maps from $T^1$ to $S^2$." Annales scientifiques de l'École Normale Supérieure 45.4 (2012): 637-680. <http://eudml.org/doc/272227>.

@article{Jerrard2012,
abstract = {We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from $T^1$ to $S^2.$ This estimate yields some continuity properties of the flow map for the topology of $L^2(T^1,S^2)$, provided one takes its quotient by the continuous group action of $T^1$ given by translations. We also prove that without taking this quotient, for any $t&gt;0$ the flow map at time $t$ is discontinuous as a map from $\mathcal \{C\}^\infty (T^1,S^2)$, equipped with the weak topology of $H^\{1/2\},$ to the space of distributions $(\mathcal \{C\}^\infty (T^1,\mathbb \{R\}^3))^*.$ The argument relies in an essential way on the link between the Schrödinger map equation and the binormal curvature flow for curves in the euclidean space, and on a new estimate for the latter.},
author = {Jerrard, Robert L., Smets, Didier},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {schrödinger maps; binormal curvature flow},
language = {eng},
number = {4},
pages = {637-680},
publisher = {Société mathématique de France},
title = {On Schrödinger maps from $T^1$ to $S^2$},
url = {http://eudml.org/doc/272227},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Jerrard, Robert L.
AU - Smets, Didier
TI - On Schrödinger maps from $T^1$ to $S^2$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 4
SP - 637
EP - 680
AB - We prove an estimate for the difference of two solutions of the Schrödinger map equation for maps from $T^1$ to $S^2.$ This estimate yields some continuity properties of the flow map for the topology of $L^2(T^1,S^2)$, provided one takes its quotient by the continuous group action of $T^1$ given by translations. We also prove that without taking this quotient, for any $t&gt;0$ the flow map at time $t$ is discontinuous as a map from $\mathcal {C}^\infty (T^1,S^2)$, equipped with the weak topology of $H^{1/2},$ to the space of distributions $(\mathcal {C}^\infty (T^1,\mathbb {R}^3))^*.$ The argument relies in an essential way on the link between the Schrödinger map equation and the binormal curvature flow for curves in the euclidean space, and on a new estimate for the latter.
LA - eng
KW - schrödinger maps; binormal curvature flow
UR - http://eudml.org/doc/272227
ER -

References

top
  1. [1] M. Agueh, Gagliardo-Nirenberg inequalities involving the gradient L 2 -norm, C. R. Math. Acad. Sci. Paris346 (2008), 757–762. Zbl1149.35329MR2427077
  2. [2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107–156. Zbl0787.35097MR1209299
  3. [3] J. Bourgain, Periodic Korteweg-de Vries equation with measures as initial data, Selecta Math. (N.S.) 3 (1997), 115–159. Zbl0891.35138MR1466164
  4. [4] N. Burq, P. Gérard & N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on S d , Math. Res. Lett.9 (2002), 323–335. Zbl1003.35113MR1909648
  5. [5] N.-H. Chang, J. Shatah & K. Uhlenbeck, Schrödinger maps, Comm. Pure Appl. Math.53 (2000), 590–602. Zbl1028.35134MR1737504
  6. [6] M. Christ, J. Colliander & T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math.125 (2003), 1235–1293. Zbl1048.35101MR2018661
  7. [7] W. Ding & Y. Wang, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A44 (2001), 1446–1464. Zbl1019.53032MR1877231
  8. [8] J. Hadamard, Sur quelques applications de l’indice de Kronecker, in Introduction à la théorie des fonctions d’une variable (J. Tannery, éd.), Hermann, 1910. 
  9. [9] H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech.51 (1972), 477–485. Zbl0237.76010
  10. [10] R. L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations, Ann. Sc. Norm. Super. Pisa Cl. Sci.1 (2002), 733–768. Zbl1170.35318MR1991001
  11. [11] R. L. Jerrard & D. Smets, On the motion of a curve by its binormal curvature, preprint arXiv:1109.5483. Zbl1327.53086
  12. [12] C. E. Kenig, G. Ponce & L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J.106 (2001), 617–633. Zbl1034.35145MR1813239
  13. [13] S. Kida, A vortex filament moving without change of form, J. Fluid Mech.112 (1981), 397–409. Zbl0484.76030MR639236
  14. [14] Y. C. Ma & M. J. Ablowitz, The periodic cubic Schrödinger equation, Stud. Appl. Math.65 (1981), 113–158. Zbl0493.35032MR628138
  15. [15] H. McGahagan, Some existence and uniqueness results for Schroedinger maps and Landau-Lifshitz-Maxwell equations, Thèse, New York University, 2004. MR2706443
  16. [16] H. McGahagan, An approximation scheme for Schrödinger maps, Comm. Partial Differential Equations32 (2007), 375–400. Zbl1122.35138MR2304153
  17. [17] L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett.16 (2009), 111–120. Zbl1180.35487MR2480565
  18. [18] A. Nahmod, J. Shatah, L. Vega & C. Zeng, Schrödinger maps and their associated frame systems, Int. Math. Res. Not. 2007 (2007), Art. ID rnm088, 1–29. Zbl1142.35087
  19. [19] J. Shatah, Regularity results for semilinear and geometric wave equations, in Mathematics of gravitation, Part I (Warsaw, 1996), Banach Center Publ. 41, Polish Acad. Sci., 1997, 69–90. Zbl0895.35065MR1466509
  20. [20] P.-L. Sulem, C. Sulem & C. Bardos, On the continuous limit for a system of classical spins, Comm. Math. Phys.107 (1986), 431–454. Zbl0614.35087MR866199
  21. [21] V. E. Zakharov & A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), 118–134; English translation: Soviet Physics JETP 34 (1972), 62–69. MR406174
  22. [22] Y. L. Zhou & B. L. Guo, Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. Sinica Ser. A27 (1984), 799–811. Zbl0571.35058MR795163
  23. [23] Y. L. Zhou, B. L. Guo & S. B. Tan, Existence and uniqueness of smooth solution for system of ferro-magnetic chain, Sci. China Ser. A34 (1991), 257–266. Zbl0752.35074MR1110342

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.