Estimations de Strichartz pour les ondes dans le modèle de Friedlander en dimension
Oana Ivanovici[1]; Gilles Lebeau[1]; Fabrice Planchon[1]
- [1] Université Nice Sophia-Antipolis Laboratoire J.A.Dieudonné UMR CNRS 7351 06108 Nice Cedex 2
Séminaire Laurent Schwartz — EDP et applications (2013-2014)
- page 1-12
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.D. Blair, H.F. Smith, and C.D. Sogge. Strichartz estimates for the wave equation on manifolds with boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(5) :1817–1829, 2009. Zbl1198.58012MR2566711
- L. Hormander, The analysis of linear partial differential operators III, Grundlehren der Mathematischen Wissenschaften vol. 274, Springer, Berlin 1985 Zbl0601.35001MR781536
- O. Ivanovici. Counterexamples to Strichartz estimates for the wave equation in domains. Math. Ann., 347(3) :627–673, 2010. Zbl1201.35060MR2640046
- O. Ivanovici. Counterexamples to the Strichartz inequalities for the wave equation in general domains with boundary. J. Eur. Math. Soc. (JEMS), 14(5) :1357–1388, 2012. Zbl1254.35035MR2966654
- O. Ivanovici, G. Lebeau, R. Lascar, F. Planchon. Dispersion for the wave equation inside strictly convex domains II : the general case, en préparation, 2014. Zbl1310.35151
- O. Ivanovici, G. Lebeau, F. Planchon. Dispersion for the wave equation inside strictly convex domains I : the Friedlander model case,2012, to appear in Annals of Math.. Zbl1310.35151
- O. Ivanovici, G. Lebeau, F. Planchon. Stricharz inequalities for the wave equation in a model strictly convex domain, prépublication, 2014. Zbl1310.35151