A two-dimensional continued fraction algorithm with Lagrange and Dirichlet properties
- [1] 26 Avenue d’Yreye 40 510 SEIGNOSSE FRANCE
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 307-346
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- V.I. Arnold, Higher dimensional continued fractions. Regular and Chaotic Dynamics 3 (1998), n3, 10–17. Zbl1044.11596MR1704965
- W. Bosma and I. Smeets, An algorithm for finding approximations with optimal Dirichlet quality (http://arxiv.org/abs/1001.4455). Submitted. Zbl06488038
- A.J. Brentjes, Multi-dimensional continued fraction algorithms. Mathematics Center Tracts 145, Mathematisch Centrum, Amsterdam, 1981. Zbl0471.10024MR638474
- K.M. Briggs, On the Furtwängler algorithm for simultaneous rational approximation. Exp. Math. (to be submitted), 2001.
- J.W.S. Cassels, An Introduction to the Geometry of Numbers. Springer. Zbl0866.11041MR1434478
- J.W.S. Cassels, An Introduction to diophantine approximation. Cambridge University Press, 1957. Zbl0077.04801MR87708
- N. Chevallier, Best Simultaneous Diophantine Approximations and Multidimensional Continued Fraction Expansions. Moscow J. of Combinatorics and Number Theory 3 (2013), n1, 3–56. Zbl1305.11059MR3284107
- I.V.L. Clarkson, Approximation of Linear Forms by Lattice Points, with applications to signal processing. PhD thesis, Australian National University, 1997.
- V. Clarkson, J. Perkins, and I. Mareels, An algorithm for best approximation of a line by lattice points in three dimensions. Technical report, 1995. 3rd Conference on Computational Algebra and Number Theory (CANT 95). Formerly online at wwwcrasys.anu.edu.au/Projects/pulseTrain/Papers/CPM95.ps.gz.
- H. Davenport, On a theorem of Furtwängler. J. London Math. Soc. 30 (1955), 186–195. Zbl0064.04501MR67943
- H. Davenport, Simultaneous diophantine approximation. Proc. London Math. Soc. 2 (1952), 403–416. Zbl0048.03204MR54657
- Ph. Furtwängler, Über die simultane Approximation von Irrationalzahlen I and II. Math. Annalen 96 (1927), 169–175 and Math. Annalen 99 (1928), 71–83. Zbl54.0212.03
- O.N. German and E.L Lakshtanov, On a multidimensional generalization of Lagrange’s theorem on continued fractions. Izv. Math. 72:1 (2008), 47–61. Zbl1180.11022MR2394971
- J.F. Koksma, Diophantische Approximationen. Ergebnisse der Mathematik und ihrer Grenzgebiete 4 (1936), 409–571; and Chelsea Publishing Company, Amsterdam, 1982. Zbl0012.39602
- E Korkina,La périodicité des fractions continues multidimensionnelles, C. R. Acad. Sci. Paris t.319, Série I (1994), 777–780. Zbl0836.11023MR1300940
- G. Lachaud, Polyèdre d’Arnol’d et voile d’un cône simplicial: analogues du théorème de Lagrange. C. R. Acad. Sci. Paris, t. 317, Série I (1993), 711–716. Zbl0809.52025MR1244417
- J.C. Lagarias, Best simultaneous diophantine approximations I. Growth rates of best approximation denominators. Trans. Am. Math. Soc. 272 (1980), 545–554. Zbl0495.10021MR662052
- J.C. Lagarias, Best simultaneous diophantine approximations II. Behavior of consecutive best approximations. Pacific J. Math. 102, n1 (1982), 61–88. Zbl0497.10025MR682045
- J.C. Lagarias,Geodesic multidimensional continued fractions, Proc. London Math. Soc, (3) (1994), 69, 231–244. Zbl0813.11040MR1289860
- N.G. Moshchevitin,Continued fractions, multidimensional Diophantine approximations and applications. J. de Théorie des Nombres de Bordeaux 11 (1999), 425–438. Zbl0987.11043MR1745888
- W. Schmidt, Diophantine approximation. Lectures Notes in Mathematics 785, Springer, 1980. Zbl0421.10019MR568710
- F. Schweiger, Multidimensional Continued Fractions Algorithms. Oxford University Press, 2000. Zbl0981.11029MR2121855
- F. Schweiger, Was leisten mehrdimensionale Kettenbrüche. Mathematische Semesterberichte 53 (2006), 231–244. Zbl1171.11302MR2251039