Continued fractions, multidimensional diophantine approximations and applications

Nikolai G. Moshchevitin

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 2, page 425-438
  • ISSN: 1246-7405

Abstract

top
This paper is a brief review of some general Diophantine results, best approximations and their applications to the theory of uniform distribution.

How to cite

top

Moshchevitin, Nikolai G.. "Continued fractions, multidimensional diophantine approximations and applications." Journal de théorie des nombres de Bordeaux 11.2 (1999): 425-438. <http://eudml.org/doc/248347>.

@article{Moshchevitin1999,
abstract = {This paper is a brief review of some general Diophantine results, best approximations and their applications to the theory of uniform distribution.},
author = {Moshchevitin, Nikolai G.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {best approximations; metric theorems; successive approximations for linear forms; bounded partial quotients; uniform distribution},
language = {eng},
number = {2},
pages = {425-438},
publisher = {Université Bordeaux I},
title = {Continued fractions, multidimensional diophantine approximations and applications},
url = {http://eudml.org/doc/248347},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Moshchevitin, Nikolai G.
TI - Continued fractions, multidimensional diophantine approximations and applications
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 2
SP - 425
EP - 438
AB - This paper is a brief review of some general Diophantine results, best approximations and their applications to the theory of uniform distribution.
LA - eng
KW - best approximations; metric theorems; successive approximations for linear forms; bounded partial quotients; uniform distribution
UR - http://eudml.org/doc/248347
ER -

References

top
  1. [1] A.D. Bruno & V.I. Parusnikov, Klein's polyhedra for two cubic forms considered by Davenport. Matemeticheskie Zametki56 (1994), 9-27. Zbl0844.11047MR1330372
  2. [2] J.W.S. Cassels, An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics 45. Cambridge University Press, New York, 1957, x+166 pp. Zbl0077.04801MR87708
  3. [3] J.W.S. Cassels, Simultaneous Diophantine Approximations II. Proc. London Math. Soc. (3) 5 (1955), 435-448. Zbl0065.28302MR75240
  4. [4] T.W. Cusick, Zaremba's conjecture and sums of the divisor functions. Math. Comp.61 (1993), no. 203, 171-176. Zbl0784.11029MR1189517
  5. [5] T.W. Cusick, M.E. Flahive, The Markoff and Lagrange spectra. AMS, Providence, Math. surveys and monographs 30, 1989. Zbl0685.10023MR1010419
  6. [6] H. Davenport, Simultaneous Diophantine Approximations. Mathematika1 (1954), 51-72. Zbl0056.04303MR64083
  7. [7] B.N. Delone, An algorithm for the "divided cells" of a lattice. (Russian)Izvestiya Akad. Nauk SSSR. Ser. Mat.11, (1947), 505-538. Zbl0037.31603MR23286
  8. [8] B.N. Delone, The St. Petersburg school in the theory of numbers. (Russian) Akad. Nauk SSSR Naucno-Populamaya Seriya. Izdat Akad. Nauk SSSR, Moscow-Leningrad, 1947, 421 pp. MR91894
  9. [9] P. Erdõs, M. Gruber & J. Hammer, Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics, 39. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. viii+184 pp. Zbl0683.10025MR1003606
  10. [10] M. Gruber & C.G. Lekkerkerker, Geometry of Numbers. Amsterdam, 2nd edition, 1987. Zbl0611.10017MR271032
  11. [11] Hua Loo Keng & Wang Yuan, Application of Number Theory to Numerical Analysis. Berlin; Heidelberg; N.Y.: Springer Verlag, 1981. Zbl0451.10001MR617192
  12. [12] V. Jarnik, Uber die simultanen diophantischen Approximationen. Math. Zeitschr.33 (1933), 505-543. Zbl0001.32403JFM57.1370.01
  13. [13] V. Jarnik, Un théorème d'existence pour les approximations diophantiennes. Enseign. Math. (2) 15 (1969), 171-175. Zbl0177.07201MR248088
  14. [14] A.Ya. Khinchin, Continued fractions. Moscow, 1978. JFM63.0924.02
  15. [15] A.Ya. Khinchin, Über eine Klasse linearer Diophantischer Approximationen. Rendiconti Circ. Mat. Palermo50 (1926), 170-195. Zbl52.0183.01JFM52.0183.01
  16. [16] S.V. Konyagin, On the recurrence of an integral of an odd conditionally periodic function. (Russian) Mat. Zametki61 (1997), no. 4, 570-577; translation in Math. Notes 61 (1997), no. 3-4, 473-479. Zbl0915.58094MR1619999
  17. [17] S.V. Konyagin & N.G. Moshchevitin, Representation of rationals by finite continuous fractions. (Russian) Uspekhi Mat. Nauk51 (1996), no. 4(310), 159-160. Zbl0879.11002MR1422237
  18. [18] V.V. Kozlov, The integrals of quasiperiodic functions. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Meh.1978, no. 1, 106-115. Zbl0404.34034MR478231
  19. [19] V.V. Kozlov, Methods of qualitative analysis in solid body motion. Moscow, Moscow University, 1980. MR598628
  20. [20] E.V. Kolomeikina, Asymptotics of mean time values. Recent problems in theory of numbers and applications. Conference in Tula (Russia) 09 - 14.09.1996., Thesis., S. 80. 
  21. [21] E.I. Korkina, Two-dimensional continued fractions. The simplest ezamples. (Russian)Trudy Mat. Inst. Steklov.209 (1995), 143-166. Zbl0883.11034MR1422222
  22. [22] N.M. Korobov, Methods of theory of numbers in approximate analysis. Moscow, 1963. 
  23. [23] N.M. Korobov, On some problems in theory of Diophantine approximations. (Russian)Uspekhi Mat. Nauk22 (1967), 83-118. Zbl0178.04603
  24. [24] N.M. Korobov, Trigonometric sums and their applications. Moscow, 1989. Zbl0665.10026MR996419
  25. [25] L. Kuipers & H. Niederreiter, Uniformly distributed sequences. N.Y., 1974. Zbl0281.10001
  26. [26] J.S. Lagarias, Best simultaneous Diophantine approximation II. Pac. J. Math.102 (1982), 61-88. Zbl0497.10025MR682045
  27. [27] G. Lachaud, Polyèdre d'Arnold et voile d'un cône simplicial: analogues du théorème de Lagrange. C. R. Acad. Sci. Paris Sér. I Math.317 (1993), no. 8, 711-716. Zbl0809.52025MR1244417
  28. [28] H. Minkowski, Généralisation de la théorie des fractions continues. Ann. Ecole norm. (3) 13 (1896), 41-60. MR1508923JFM27.0170.01
  29. [29] N.G. Moshchevitin, Distribution of values of linear functions and asymptotic behaviour of trajectories of some dynamical systems. (Russian) Matematicheskie Zametki58 (1995), 394-410. Zbl0857.11037MR1368548
  30. [30] N.G. Moshchevitin, On the recurrence of an integral of a smooth three-frequency conditionally periodic function. (Russian) Mat. Zametki58 (1995), no. 5, 723-735. Zbl0860.42010MR1378783
  31. [31] N.G. Moshchevitin, Nonrecurrence of an integral of a conditionally periodic function. (Russian) Mat. Zametki49 (1991), no. 6, 138-140. Zbl0781.26006MR1135526
  32. [32] N.G. Moshchevitin, On representation of rationals as continuous fractions and sets free from arithmetic progressions. (Russian) Matematicheskie Zapiski2 (1996), 99-109. 
  33. [33] N.G. Moshchevitin, On simultaneous Diophantine approximations. Matemticheskie Zametki61 (1997), no. 5, 706-716. Zbl0916.11040MR1620125
  34. [34] N.G. Moshchevitin, On the recurrence of an integral of a smooth conditionally periodic function. (Russian) Mat. Zametki63 (1998), no. 5, 737-748. Zbl0922.42005MR1683648
  35. [35] N.G. Moshchevitin, On geometry of the best approximations. Doklady Rossiiskoi Akademii Nauk359 (1998), 587-589. Zbl0993.11035MR1668456
  36. [36] N.G. Moshchevitin, On best joint approximations. (Russian) Uspekhi Mat. Nauk51 (1996), no. 6(312), 213-214. Zbl0893.11024MR1440169
  37. [37] N.G. Moshchevitin, Recent results on asymptotic behaviour of integrals of quasiperiodic functions. Amer. Math. Soc. Transl. (2) 168 (1995), 201-209. Zbl0889.11024MR1351037
  38. [38] H. Niederreiter, Application of Diophantine Approximation to Numerical Integration. in book Dioph. Appr. and Appl. ed. Osgood C. N.Y., Academic Press, 1973, 129 -199. Zbl0268.65014MR357357
  39. [39] H. Niederreiter, Dyadic Fractions with Small Partial Quotients. Monatsh. Math.101 (1986), 309-315. Zbl0584.10004MR851952
  40. [40] L.G. Peck, On Uniform Distribution of Algebraic Numbers. Proc. Amer. Math. Soc.4 (1953), 440-443. Zbl0050.27601MR55385
  41. [41] H. Poincaré, Sur les séries trigonométriques. Comptes Rendus101 (1885), 1131-1134. Zbl17.0223.02JFM17.0223.02
  42. [42] H. PoincaréOn curves defined by differential equations. (Russian transl.)Moscow-Leningrad, 1947. 
  43. [43] W. Schmidt, Diophantine approximation. Lecture Notes in Mathematics 785. Springer, Berlin, 1980. x+299 pp. Zbl0421.10019MR568710
  44. [44] E.A. Sidorov, On conditions of uniform Poisson stability of cylindrical systems. Uspekhi Mat. Nauk34 (1979), no. 6(210), 184-188. Zbl0433.54033MR562837
  45. [45] B.F. Skubenko, Minima of decomposable cubic forms in 3 variables. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)168 (1988), 125-139. Zbl0693.10024MR982482
  46. [46] B.F. Skubenko, Minima of decomposable forms of degree n in n variables. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 183 (1990), 142-154. Zbl0745.11034MR1075009
  47. [47] V.G. Sprindzuk, Metric theory of diophantine approximations. Moscow, 1977. Zbl0417.10044
  48. [48] V.G. Sprindzuk, Asymptotic behavior of integrals of quasiperiodic functions. (Russian)Differential Equations3 (1967), 862-868. Zbl0225.34024MR212468
  49. [49] I.L. Verbitzki, Estimates of the remainder term in Kronecker theorem on approximations. Theoriia Functzii, Funktzianal. Analiz i ih prilogeniia, Harkov, 5 (1967), 84-98. 
  50. [50] G.F. Voronoi, On one generalization of continued fractions algorithm. Selected works T.1, Kiev, 1952. 
  51. [51] G. Weyl, Über die Gleichverteliung von Zahlen mod. Eins. Math. Ann.77 (1916), 313-352. Zbl46.0278.06MR1511862JFM46.0278.06
  52. [52] S.K. Zaremba, La méthode des "bons treillis" pour le calcul des intégrales multiples. In: Appl. of Number Theory to Numerical Analysis. ed. S.K. Zaremba; N.Y., 1972, 39-119. Zbl0246.65009MR343530

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.