The correspondence between Barsotti-Tate groups and Kisin modules when
Tong Liu[1]
- [1] Department of Mathematics Purdue University West Lafayette, 47907, USA.
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 3, page 661-676
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLiu, Tong. "The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 661-676. <http://eudml.org/doc/275747>.
@article{Liu2013,
abstract = {Let $K$ be a finite extension over $\mathbb\{Q\}_2$ and $\mathcal\{O\}_K$ the ring of integers. We prove the equivalence of categories between the category of Kisin modules of height 1 and the category of Barsotti-Tate groups over $\mathcal\{O\}_K$.},
affiliation = {Department of Mathematics Purdue University West Lafayette, 47907, USA.},
author = {Liu, Tong},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {11},
number = {3},
pages = {661-676},
publisher = {Société Arithmétique de Bordeaux},
title = {The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$},
url = {http://eudml.org/doc/275747},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Liu, Tong
TI - The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 661
EP - 676
AB - Let $K$ be a finite extension over $\mathbb{Q}_2$ and $\mathcal{O}_K$ the ring of integers. We prove the equivalence of categories between the category of Kisin modules of height 1 and the category of Barsotti-Tate groups over $\mathcal{O}_K$.
LA - eng
UR - http://eudml.org/doc/275747
ER -
References
top- C. Breuil, Schémas en groupes et corps des normes. Unpublished.
- C. Breuil, Représentations -adiques semi-stables et transversalité de Griffiths. Math. Ann., 307(2) (1997), 191–224. Zbl0883.11049MR1428871
- C. Breuil, Groupes -divisibles, groupes finis et modules filtrés. Ann. of Math.(2) 152(2) (2000), 489–549. Zbl1042.14018MR1804530
- C. Breuil, Integral -adic Hodge theory. In Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. 36 (2002), Pure Math., Math. Soc. Japan, Tokyo, 51–80. Zbl1046.11085MR1971512
- X. Caruso and T. Liu, Some bounds for ramification of -torsion semi-stable representations. J. Algebra, 325 (2011), 70–96. Zbl1269.14001MR2745530
- J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate. In Journées de Géométrie Algébrique de Rennes, (Rennes, 1978), Vol.III, volume 65 of Astérisque, . Soc. Math. France Paris (1979), 3–80. Zbl0429.14016MR563472
- J.-M. Fontaine, Le corps des périodes -adiques. Astérisque, 223 (1994), 59–111. Zbl0940.14012MR1293971
- J.-M. Fontaine, Représentations -adiques semi-stables. Astérisque, 223 (1994), 113–184. With an appendix by Pierre Colmez, Périodes -adiques (Bures-sur-Yvette, 1988). Zbl0865.14009MR1293972
- W. Kim, The classification of -divisible groups over 2-adic discrete valuation rings. Math. Res. Lett., 19(1) (2012), 121–141. Zbl1284.14056MR2923180
- M. Kisin, Crystalline representations and -crystals. In Algebraic geometry and number theory,Progr. Math. 253, Birkhäuser Boston, Boston, MA, (2006), 459–496. Zbl1184.11052MR2263197
- M. KisinModularity of 2-adic Barsotti-Tate representations. Invent. Math., 178(3) (2009), 587–634. Zbl1304.11043MR2551765
- M. KisinModuli of finite flat group schemes, and modularity. Ann. of Math.(2), 170(3) (2009), 1085–1180. Zbl1201.14034MR2600871
- E. Lau, A relation between dieudonne displays and crystalline dieudonne theory. arXiv:1006.2720. Zbl1308.14046
- T. Liu, Torsion -adic Galois representations and a conjecture of fontaine. Ann. Sci. École Norm. Sup. (4), 40(4) (2007), 633–674. Zbl1163.11043MR2191528
- T. Liu, On lattices in semi-stable representations: a proof of a conjecture of Breuil. Compos. Math., 144(1) (2008), 61–88. Zbl1133.14020MR2388556
- T. Liu, A note on lattices in semi-stable representations. Mathematische Annalen, 346(1) (2010), 117–138. Zbl1208.14017MR2558890
- M. Raynaud, Schémas en groupes de type . Bull. Soc. Math. France, 102 (1974), 241–280. Zbl0325.14020MR419467
- J. T. Tate, -divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, (1967), 158–183. Zbl0157.27601MR231827
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.