The correspondence between Barsotti-Tate groups and Kisin modules when p = 2

Tong Liu[1]

  • [1] Department of Mathematics Purdue University West Lafayette, 47907, USA.

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 3, page 661-676
  • ISSN: 1246-7405

Abstract

top
Let K be a finite extension over 2 and 𝒪 K the ring of integers. We prove the equivalence of categories between the category of Kisin modules of height 1 and the category of Barsotti-Tate groups over 𝒪 K .

How to cite

top

Liu, Tong. "The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$." Journal de Théorie des Nombres de Bordeaux 25.3 (2013): 661-676. <http://eudml.org/doc/275747>.

@article{Liu2013,
abstract = {Let $K$ be a finite extension over $\mathbb\{Q\}_2$ and $\mathcal\{O\}_K$ the ring of integers. We prove the equivalence of categories between the category of Kisin modules of height 1 and the category of Barsotti-Tate groups over $\mathcal\{O\}_K$.},
affiliation = {Department of Mathematics Purdue University West Lafayette, 47907, USA.},
author = {Liu, Tong},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {11},
number = {3},
pages = {661-676},
publisher = {Société Arithmétique de Bordeaux},
title = {The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$},
url = {http://eudml.org/doc/275747},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Liu, Tong
TI - The correspondence between Barsotti-Tate groups and Kisin modules when $p=2$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/11//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 3
SP - 661
EP - 676
AB - Let $K$ be a finite extension over $\mathbb{Q}_2$ and $\mathcal{O}_K$ the ring of integers. We prove the equivalence of categories between the category of Kisin modules of height 1 and the category of Barsotti-Tate groups over $\mathcal{O}_K$.
LA - eng
UR - http://eudml.org/doc/275747
ER -

References

top
  1. C. Breuil, Schémas en groupes et corps des normes. Unpublished. 
  2. C. Breuil, Représentations p -adiques semi-stables et transversalité de Griffiths. Math. Ann., 307(2) (1997), 191–224. Zbl0883.11049MR1428871
  3. C. Breuil, Groupes p -divisibles, groupes finis et modules filtrés. Ann. of Math.(2) 152(2) (2000), 489–549. Zbl1042.14018MR1804530
  4. C. Breuil, Integral p -adic Hodge theory. In Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. 36 (2002), Pure Math., Math. Soc. Japan, Tokyo, 51–80. Zbl1046.11085MR1971512
  5. X. Caruso and T. Liu, Some bounds for ramification of p n -torsion semi-stable representations. J. Algebra, 325 (2011), 70–96. Zbl1269.14001MR2745530
  6. J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate. In Journées de Géométrie Algébrique de Rennes, (Rennes, 1978), Vol.III, volume 65 of Astérisque, . Soc. Math. France Paris (1979), 3–80. Zbl0429.14016MR563472
  7. J.-M. Fontaine, Le corps des périodes p -adiques. Astérisque, 223 (1994), 59–111. Zbl0940.14012MR1293971
  8. J.-M. Fontaine, Représentations p -adiques semi-stables. Astérisque, 223 (1994), 113–184. With an appendix by Pierre Colmez, Périodes p -adiques (Bures-sur-Yvette, 1988). Zbl0865.14009MR1293972
  9. W. Kim, The classification of p -divisible groups over 2-adic discrete valuation rings. Math. Res. Lett., 19(1) (2012), 121–141. Zbl1284.14056MR2923180
  10. M. Kisin, Crystalline representations and F -crystals. In Algebraic geometry and number theory,Progr. Math. 253, Birkhäuser Boston, Boston, MA, (2006), 459–496. Zbl1184.11052MR2263197
  11. M. KisinModularity of 2-adic Barsotti-Tate representations. Invent. Math., 178(3) (2009), 587–634. Zbl1304.11043MR2551765
  12. M. KisinModuli of finite flat group schemes, and modularity. Ann. of Math.(2), 170(3) (2009), 1085–1180. Zbl1201.14034MR2600871
  13. E. Lau, A relation between dieudonne displays and crystalline dieudonne theory. arXiv:1006.2720. Zbl1308.14046
  14. T. Liu, Torsion p -adic Galois representations and a conjecture of fontaine. Ann. Sci. École Norm. Sup. (4), 40(4) (2007), 633–674. Zbl1163.11043MR2191528
  15. T. Liu, On lattices in semi-stable representations: a proof of a conjecture of Breuil. Compos. Math., 144(1) (2008), 61–88. Zbl1133.14020MR2388556
  16. T. Liu, A note on lattices in semi-stable representations. Mathematische Annalen, 346(1) (2010), 117–138. Zbl1208.14017MR2558890
  17. M. Raynaud, Schémas en groupes de type ( p , , p ) . Bull. Soc. Math. France, 102 (1974), 241–280. Zbl0325.14020MR419467
  18. J. T. Tate, p -divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, (1967), 158–183. Zbl0157.27601MR231827

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.