The parabolic-parabolic Keller-Segel equation

Kleber Carrapatoso[1]

  • [1] CMLA (UMR CNRS 8536) École Normale Supérieure de Cachan France

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • Volume: 9, Issue: 1, page 1-17
  • ISSN: 2266-0607

Abstract

top
I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].

How to cite

top

Carrapatoso, Kleber. "The parabolic-parabolic Keller-Segel equation." Séminaire Laurent Schwartz — EDP et applications 9.1 (2014-2015): 1-17. <http://eudml.org/doc/275755>.

@article{Carrapatoso2014-2015,
abstract = {I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].},
affiliation = {CMLA (UMR CNRS 8536) École Normale Supérieure de Cachan France},
author = {Carrapatoso, Kleber},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {chaos; entropic chaos; propagation of chaos; Landau equation; grazing collisions; Maxwellian molecules; trend to equilibrium},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The parabolic-parabolic Keller-Segel equation},
url = {http://eudml.org/doc/275755},
volume = {9},
year = {2014-2015},
}

TY - JOUR
AU - Carrapatoso, Kleber
TI - The parabolic-parabolic Keller-Segel equation
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 9
IS - 1
SP - 1
EP - 17
AB - I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].
LA - eng
KW - chaos; entropic chaos; propagation of chaos; Landau equation; grazing collisions; Maxwellian molecules; trend to equilibrium
UR - http://eudml.org/doc/275755
ER -

References

top
  1. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213–242. Zbl0826.58042MR1230930
  2. M. Ben-Artzi, Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal. 128 (1994), no. 4, 329–358. Zbl0837.35110MR1308857
  3. P. Biler, L. Corrias, and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. Math. Biol. 63 (2011), no. 1, 1–32. Zbl1230.92011MR2806487
  4. P. Biler, I. Guerra, and G. Karch, Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane, http://arxiv.org/abs/1401.7650. Zbl1326.35398
  5. A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations (2006), No. 44, 1–33. Zbl1112.35023MR2226917
  6. H. Brezis, Remarks on the preceding paper by M. Ben-Artzi: “Global solutions of two-dimensional Navier-Stokes and Euler equations” [Arch. Rational Mech. Anal. 128 (1994), no. 4, 329–358; MR1308857 (96h:35148)], Arch. Rational Mech. Anal. 128 (1994), no. 4, 359–360. Zbl0837.35112MR1308858
  7. V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in 2 , Commun. Math. Sci. 6 (2008), no. 2, 417–447. Zbl1149.35360MR2433703
  8. J. Campos and J. Dolbeault, A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 949–954. Zbl1257.35007MR2996772
  9. J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane, 2012. 
  10. E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n , Geom. Funct. Anal. 2 (1992), no. 1, 90–104. Zbl0754.47041MR1143664
  11. K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation, http://arxiv.org/abs/1406.6006. 
  12. J. A. Carrillo, S. Lisini, and E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models, Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1319–1338. Zbl1277.35009MR3117843
  13. L. Corrias, M. Escobedo, and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Diff. Equations 257 (2014), no. 6, 1840–1878, http://dx.doi.org/10.1016/j.jde.2014.05.019. Zbl1297.35033MR3227285
  14. R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511–547. Zbl0696.34049MR1022305
  15. G. Egaña and S. Mischler, Uniqueness and long time assymptotic for the Keller-Segel equation - Part I. The parabolic-elliptic case, http://arxiv.org/abs/1310.7771. Zbl1334.35358
  16. L. C. F. Ferreira and J. C. Precioso, Existence and asymptotic behaviour for the parabolic-parabolic Keller-Segel system with singular data, Nonlinearity 24 (2011), no. 5, 1433–1449. Zbl1221.35205MR2785976
  17. N. Fournier, M. Hauray, and S. Mischler, Propagation of chaos for the 2d viscous vortex model, http://arxiv.org/abs/1212.1437. Zbl1299.76040MR3254330
  18. M. P. Gualdani, S. Mischler, and C. Mouhot, Factorization of non-symmetric operators and exponential H -Theorem, http://arxiv.org/abs/1006.5523. 
  19. M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 4, 633–683 (1998). Zbl0904.35037MR1627338
  20. E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399–415. Zbl1170.92306
  21. S. Mischler and C. Mouhot, Exponential stability of slowly decaying solutions to the Kinetic-Fokker-Planck equation, http://arxiv.org/abs/1412.7487. Zbl06591764
  22. S. Mischler and C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, Comm. Math. Phys. 288 (2009), no. 2, 431–502. Zbl1178.82056MR2500990
  23. S. Mischler and J. Scher, Semigroup spectral analysis and growth-fragmentation equation, to appear in Ann. Inst. H. Poincaré - Anal. Non Linéaire (2015). Zbl06572960
  24. T. Nagai, Global existence and blowup of solutions to a chemotaxis system, Proceedings of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), vol. 47, 2001, pp. 777–787. Zbl1042.35574MR1970697
  25. T. Nagai, T. Senba, and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J. 30 (2000), no. 3, 463–497. Zbl0984.35079MR1799300
  26. Y. Naito, T. Suzuki, and K. Yoshida, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations 184 (2002), no. 2, 386–421. Zbl1016.35037MR1929883
  27. C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311–338. Zbl1296.82044MR81586
  28. I. Tristani, Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, http://arxiv.org/abs/1311.5168. Zbl1330.76124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.