The parabolic-parabolic Keller-Segel equation
- [1] CMLA (UMR CNRS 8536) École Normale Supérieure de Cachan France
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- Volume: 9, Issue: 1, page 1-17
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topCarrapatoso, Kleber. "The parabolic-parabolic Keller-Segel equation." Séminaire Laurent Schwartz — EDP et applications 9.1 (2014-2015): 1-17. <http://eudml.org/doc/275755>.
@article{Carrapatoso2014-2015,
abstract = {I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].},
affiliation = {CMLA (UMR CNRS 8536) École Normale Supérieure de Cachan France},
author = {Carrapatoso, Kleber},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {chaos; entropic chaos; propagation of chaos; Landau equation; grazing collisions; Maxwellian molecules; trend to equilibrium},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The parabolic-parabolic Keller-Segel equation},
url = {http://eudml.org/doc/275755},
volume = {9},
year = {2014-2015},
}
TY - JOUR
AU - Carrapatoso, Kleber
TI - The parabolic-parabolic Keller-Segel equation
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 9
IS - 1
SP - 1
EP - 17
AB - I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].
LA - eng
KW - chaos; entropic chaos; propagation of chaos; Landau equation; grazing collisions; Maxwellian molecules; trend to equilibrium
UR - http://eudml.org/doc/275755
ER -
References
top- W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213–242. Zbl0826.58042MR1230930
- M. Ben-Artzi, Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal. 128 (1994), no. 4, 329–358. Zbl0837.35110MR1308857
- P. Biler, L. Corrias, and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. Math. Biol. 63 (2011), no. 1, 1–32. Zbl1230.92011MR2806487
- P. Biler, I. Guerra, and G. Karch, Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane, http://arxiv.org/abs/1401.7650. Zbl1326.35398
- A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations (2006), No. 44, 1–33. Zbl1112.35023MR2226917
- H. Brezis, Remarks on the preceding paper by M. Ben-Artzi: “Global solutions of two-dimensional Navier-Stokes and Euler equations” [Arch. Rational Mech. Anal. 128 (1994), no. 4, 329–358; MR1308857 (96h:35148)], Arch. Rational Mech. Anal. 128 (1994), no. 4, 359–360. Zbl0837.35112MR1308858
- V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in , Commun. Math. Sci. 6 (2008), no. 2, 417–447. Zbl1149.35360MR2433703
- J. Campos and J. Dolbeault, A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 949–954. Zbl1257.35007MR2996772
- J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane, 2012.
- E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on , Geom. Funct. Anal. 2 (1992), no. 1, 90–104. Zbl0754.47041MR1143664
- K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation, http://arxiv.org/abs/1406.6006.
- J. A. Carrillo, S. Lisini, and E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models, Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1319–1338. Zbl1277.35009MR3117843
- L. Corrias, M. Escobedo, and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Diff. Equations 257 (2014), no. 6, 1840–1878, http://dx.doi.org/10.1016/j.jde.2014.05.019. Zbl1297.35033MR3227285
- R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511–547. Zbl0696.34049MR1022305
- G. Egaña and S. Mischler, Uniqueness and long time assymptotic for the Keller-Segel equation - Part I. The parabolic-elliptic case, http://arxiv.org/abs/1310.7771. Zbl1334.35358
- L. C. F. Ferreira and J. C. Precioso, Existence and asymptotic behaviour for the parabolic-parabolic Keller-Segel system with singular data, Nonlinearity 24 (2011), no. 5, 1433–1449. Zbl1221.35205MR2785976
- N. Fournier, M. Hauray, and S. Mischler, Propagation of chaos for the 2d viscous vortex model, http://arxiv.org/abs/1212.1437. Zbl1299.76040MR3254330
- M. P. Gualdani, S. Mischler, and C. Mouhot, Factorization of non-symmetric operators and exponential -Theorem, http://arxiv.org/abs/1006.5523.
- M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 4, 633–683 (1998). Zbl0904.35037MR1627338
- E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399–415. Zbl1170.92306
- S. Mischler and C. Mouhot, Exponential stability of slowly decaying solutions to the Kinetic-Fokker-Planck equation, http://arxiv.org/abs/1412.7487. Zbl06591764
- S. Mischler and C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, Comm. Math. Phys. 288 (2009), no. 2, 431–502. Zbl1178.82056MR2500990
- S. Mischler and J. Scher, Semigroup spectral analysis and growth-fragmentation equation, to appear in Ann. Inst. H. Poincaré - Anal. Non Linéaire (2015). Zbl06572960
- T. Nagai, Global existence and blowup of solutions to a chemotaxis system, Proceedings of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), vol. 47, 2001, pp. 777–787. Zbl1042.35574MR1970697
- T. Nagai, T. Senba, and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J. 30 (2000), no. 3, 463–497. Zbl0984.35079MR1799300
- Y. Naito, T. Suzuki, and K. Yoshida, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations 184 (2002), no. 2, 386–421. Zbl1016.35037MR1929883
- C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311–338. Zbl1296.82044MR81586
- I. Tristani, Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, http://arxiv.org/abs/1311.5168. Zbl1330.76124
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.