Low dimensional strongly perfect lattices. II: Dual strongly perfect lattices of dimension 13 and 15.

Gabriele Nebe[1]; Elisabeth Nossek[1]; Boris Venkov[2]

  • [1] Lehrstuhl D für Mathematik RWTH Aachen University 52056 Aachen Germany
  • [2] Boris Venkov died in November 2011 before we could finish the paper

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 1, page 147-161
  • ISSN: 1246-7405

Abstract

top
A lattice is called dual strongly perfect if both, the lattice and its dual, are strongly perfect. We show that there are no dual strongly perfect lattices of dimension 13 and 15.

How to cite

top

Nebe, Gabriele, Nossek, Elisabeth, and Venkov, Boris. "Low dimensional strongly perfect lattices. II: Dual strongly perfect lattices of dimension 13 and 15.." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 147-161. <http://eudml.org/doc/275758>.

@article{Nebe2013,
abstract = {A lattice is called dual strongly perfect if both, the lattice and its dual, are strongly perfect. We show that there are no dual strongly perfect lattices of dimension 13 and 15.},
affiliation = {Lehrstuhl D für Mathematik RWTH Aachen University 52056 Aachen Germany; Lehrstuhl D für Mathematik RWTH Aachen University 52056 Aachen Germany; Boris Venkov died in November 2011 before we could finish the paper},
author = {Nebe, Gabriele, Nossek, Elisabeth, Venkov, Boris},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {extreme lattices; spherical designs; strongly perfect lattices; dual strongly perfect lattices},
language = {eng},
month = {4},
number = {1},
pages = {147-161},
publisher = {Société Arithmétique de Bordeaux},
title = {Low dimensional strongly perfect lattices. II: Dual strongly perfect lattices of dimension 13 and 15.},
url = {http://eudml.org/doc/275758},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Nebe, Gabriele
AU - Nossek, Elisabeth
AU - Venkov, Boris
TI - Low dimensional strongly perfect lattices. II: Dual strongly perfect lattices of dimension 13 and 15.
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 147
EP - 161
AB - A lattice is called dual strongly perfect if both, the lattice and its dual, are strongly perfect. We show that there are no dual strongly perfect lattices of dimension 13 and 15.
LA - eng
KW - extreme lattices; spherical designs; strongly perfect lattices; dual strongly perfect lattices
UR - http://eudml.org/doc/275758
ER -

References

top
  1. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. (http://magma.maths.usyd.edu.au/magma/) Zbl0898.68039MR1484478
  2. K. M. Anstreicher, Improved linear programming bounds for antipodal spherical codes. Discrete Comput. Geom. 28 (2002), 107–114. Zbl1175.90284MR1904012
  3. H. Cohn, N.D. Elkies, New upper bounds on sphere packings I. Annals of Math. 157 (2003), 689–714. Zbl1041.52011MR1973059
  4. R. Coulangeon, Spherical designs and zeta functions of lattices. International Mathematics Research Notices (2006). Zbl1159.11020MR2272103
  5. J. Martinet, Perfect lattices in euclidean space. Springer Grundlehren 327 (2003). Zbl1017.11031MR1957723
  6. G. Nebe, B. Venkov, The strongly perfect lattices of dimension 10. J. Théorie de Nombres de Bordeaux 12 (2000), 503–518. Zbl0997.11049MR1823200
  7. G. Nebe, B. Venkov, Low dimensional strongly perfect lattices I: The 12-dimensional case. L’enseignement Mathématique 51 (2005), 129–163. Zbl1124.11031MR2154624
  8. G. Nebe, B. Venkov, Low dimensional strongly perfect lattices III: The dual strongly perfect lattices of dimension 14. Int. J. Number Theory 6 (2010), 387–409. Zbl1219.11103MR2646763
  9. E. Nossek, On low dimensional strongly perfect lattices. PhD thesis, RWTH Aachen university, 2013. Zbl1271.11069
  10. B. Venkov, Réseaux et designs sphériques. Monogr. Ens. Math. 37 (2001), 10–86. Zbl1139.11320MR1878745

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.