Around the Littlewood conjecture in Diophantine approximation
Yann Bugeaud[1]
- [1] Mathématiques Université de Strasbourg 7, rue René Descartes, F-67084 Strasbourg France
Publications mathématiques de Besançon (2014)
- Issue: 1, page 5-18
- ISSN: 1958-7236
Access Full Article
topAbstract
topHow to cite
topBugeaud, Yann. "Around the Littlewood conjecture in Diophantine approximation." Publications mathématiques de Besançon (2014): 5-18. <http://eudml.org/doc/275760>.
@article{Bugeaud2014,
abstract = {The Littlewood conjecture in Diophantine approximation claims that\[ \inf \_\{q \ge 1\} \, q \cdot \Vert q \alpha \Vert \cdot \Vert q \beta \Vert = 0 \]holds for all real numbers $\alpha $ and $\beta $, where $\Vert \cdot \Vert $ denotes the distance to the nearest integer. Its $p$-adic analogue, formulated by de Mathan and Teulié in 2004, asserts that\[ \inf \_\{q \ge 1\} \, q \cdot \Vert q \alpha \Vert \cdot \vert q \vert \_p = 0 \]holds for every real number $\alpha $ and every prime number $p$, where $| \cdot |_p$ denotes the $p$-adic absolute value normalized by $|p|_p = p^\{-1\}$. We survey the known results on these conjectures and highlight recent developments.},
affiliation = {Mathématiques Université de Strasbourg 7, rue René Descartes, F-67084 Strasbourg France},
author = {Bugeaud, Yann},
journal = {Publications mathématiques de Besançon},
keywords = {Simultaneous approximation; Littlewood conjecture; simultaneous approximation},
language = {eng},
number = {1},
pages = {5-18},
publisher = {Presses universitaires de Franche-Comté},
title = {Around the Littlewood conjecture in Diophantine approximation},
url = {http://eudml.org/doc/275760},
year = {2014},
}
TY - JOUR
AU - Bugeaud, Yann
TI - Around the Littlewood conjecture in Diophantine approximation
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
IS - 1
SP - 5
EP - 18
AB - The Littlewood conjecture in Diophantine approximation claims that\[ \inf _{q \ge 1} \, q \cdot \Vert q \alpha \Vert \cdot \Vert q \beta \Vert = 0 \]holds for all real numbers $\alpha $ and $\beta $, where $\Vert \cdot \Vert $ denotes the distance to the nearest integer. Its $p$-adic analogue, formulated by de Mathan and Teulié in 2004, asserts that\[ \inf _{q \ge 1} \, q \cdot \Vert q \alpha \Vert \cdot \vert q \vert _p = 0 \]holds for every real number $\alpha $ and every prime number $p$, where $| \cdot |_p$ denotes the $p$-adic absolute value normalized by $|p|_p = p^{-1}$. We survey the known results on these conjectures and highlight recent developments.
LA - eng
KW - Simultaneous approximation; Littlewood conjecture; simultaneous approximation
UR - http://eudml.org/doc/275760
ER -
References
top- B. Adamczewski and Y. Bugeaud, On the Littlewood conjecture in simultaneous Diophantine approximation, J. London Math. Soc. 73 (2006), 355–366. Zbl1093.11052MR2225491
- J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge, 2003. Zbl1086.11015MR1997038
- D. Badziahin, On multiplicatively badly approximable numbers, Mathematika 59 (2013), 31–55. Zbl1269.11066MR3028170
- D. Badziahin, On the continued fraction expansion of potential counterexamples to the -adic Littlewood conjecture, preprint (arXiv:1406.3594).
- D. Badziahin, Y. Bugeaud, M. Einsiedler and D. Kleinbock, On the complexity of a putative counterexample to the -adic Littlewood conjecture, preprint (arXiv:1405.5545). Zbl1331.11049
- D. Badziahin and S. Velani, Multiplicatively badly approximable numbers and the mixed Littlewood conjecture, Adv. Math. 228 (2011), 2766–2796. Zbl1235.11071MR2838058
- V. Beresnevich, A. Haynes, and S. Velani, Multiplicative zero-one laws and metric number theory, Acta Arith. 160 (2013), 101–114. Zbl1292.11085MR3105329
- M. D. Boshernitzan, Elementary proof of Furstenberg’s Diophantine result, Proc. Amer. Math. Soc. 122 (1994), 67–70. Zbl0815.11036MR1195714
- J. Bourgain, E. Lindenstrauss, Ph. Michel, and A. Venkatesh, Some effective results for , Ergodic Theory Dynam. Systems 29 (2009), 1705–1722. Zbl1237.37009MR2563089
- Y. Bugeaud, M. Drmota, and B. de Mathan, On a mixed Littlewood conjecture in Diophantine approximation, Acta Arith. 128 (2007), 107–124. Zbl1209.11064MR2313997
- Y. Bugeaud, A. Haynes, and S. Velani, Metric considerations concerning the mixed Littlewood conjecture, Int. J. Number Theory 7 (2011), 593–609. Zbl1259.11069MR2805569
- Y. Bugeaud and N. Moshchevitin, Badly approximable numbers and Littlewood-type problems, Math. Proc. Cambridge Phil. Soc. 150 (2011), 215–226. Zbl1231.11071MR2770060
- Y. Bugeaud, Distribution modulo one and Diophantine approximation. Cambridge Tracts in Mathematics 193, Cambridge, 2012. Zbl1260.11001MR2953186
- J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and indefinite ternary quadratic forms, Philos. Trans. Roy. Soc. London, Ser. A, 248 (1955), 73–96. Zbl0065.27905MR70653
- M. Einsiedler, L. Fishman, and U. Shapira, Diophantine approximation on fractals, Geom. Funct. Anal. 21 (2011), 14–35. Zbl1244.11070MR2773102
- M. Einsiedler, A. Katok, and E. Lindenstrauss, Invariant measures and the set of exceptions to the Littlewood conjecture, Ann. of Math. 164 (2006), 513–560. Zbl1109.22004MR2247967
- M. Einsiedler and D. Kleinbock, Measure rigidity and -adic Littlewood-type problems, Compositio Math. 143 (2007), 689–702. Zbl1149.11036MR2330443
- H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. Zbl0146.28502MR213508
- P. Gallagher, Metric simultaneous Diophantine aproximations, J. London Math. Soc. 37 (1962), 387–390. Zbl0124.02902MR157939
- A. Gorodnik and P. Vishe, Inhomogeneous multiplicative Littlewood conjecture and logarithmic savings. In preparation.
- S. Harrap and A. Haynes, The mixed Littlewood conjecture for pseudo-absolute values, Math. Ann. 357 (2013), 941–960. Zbl1300.11082MR3118619
- A. Haynes, J. L. Jensen, and S. Kristensen, Metrical musings on Littlewood and friends, Proc. Amer. Math. Soc. 142 (2014), 457–466. Zbl1327.11050MR3133988
- A. Haynes and S. Munday, Diophantine approximation and coloring, Amer. Math. Monthly. To appear. Zbl1328.05065
- E. Lindenstrauss, Equidistribution in homogeneous spaces and number theory. In: Proceedings of the International Congress of Mathematicians. Volume I, 531–557, Hindustan Book Agency, New Delhi, 2010. Zbl1235.37004MR2827904
- B. de Mathan, Conjecture de Littlewood et récurrences linéaires, J. Théor. Nombres Bordeaux 13 (2003), 249–266. Zbl1045.11048
- B. de Mathan et O. Teulié, Problèmes diophantiens simultanés, Monatsh. Math. 143 (2004), 229–245. Zbl1162.11361
- H. L. Montgomery, Littlewood’s work in number theory, Bull. London Math. Soc. 11 (1979), 78–86.
- M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815–866. Zbl0019.33502MR1507944
- M. Morse and G. A. Hedlund, Symbolic dynamics II, Amer. J. Math. 62 (1940), 1–42. Zbl0022.34003MR745
- L. G. Peck, Simultaneous rational approximations to algebraic numbers, Bull. Amer. Math. Soc. 67 (1961), 197–201. Zbl0098.26302MR122772
- Yu. Peres and W. Schlag, Two Erdős problems on lacunary sequences: chromatic numbers and Diophantine approximations, Bull. Lond. Math. Soc. 42 (2010), 295–300. Zbl1215.05074MR2601556
- A. D. Pollington and S. Velani, On a problem in simultaneous Diophantine approximation: Littlewood’s conjecture, Acta Math. 185 (2000), 287–306. Zbl0970.11026MR1819996
- U. Shapira, A solution to a problem of Cassels and Diophantine properties of cubic numbers, Ann. of Math. 173 (2011), 543–557. Zbl1242.11046MR2753608
- D. C. Spencer, The lattice points of tetrahedra, J. Math. Phys. Mass. Inst. Tech. 21 (1942), 189–197. Zbl0060.11501MR7767
- A. Venkatesh, The work of Einsiedler, Katok and Lindenstrauss on the Littlewood conjecture, Bull. Amer. Math. Soc. (N.S.) 45 (2008), 117–134. Zbl1194.11075MR2358379
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.