Conjecture de Littlewood et récurrences linéaires
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 1, page 249-266
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.-P. Allouche, J.L. Davison, M. Queffélec, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory91 (2001), 39-66. Zbl0998.11036MR1869317
- [2] J.W.S. Cassels, H.P.F. Swinnerton-Dyer, On the product of three homogeneous linear forms and indefinite ternary quadratic forms. Philos. Trans. Roy. Soc. London, Ser. A, 248 (1955), 73-96. Zbl0065.27905MR70653
- [3] L.G. Peck, Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc.67 (1961), 197-201. Zbl0098.26302MR122772
- [4] A.D. Pollington, S.L. Velani, On a problem in simultaneous Diophantine approximation: Littlewood's conjecture. Acta Math.185 (2000), 287-306. Zbl0970.11026MR1819996
- [5] M. Queffélec, Trcanscendance des fractions continues de Thue-Morse. J. Number Theory73 (1998), 201-211. Zbl0920.11045MR1658023
- [6] W.M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals. Acta Math.119 (1967), 27-50. Zbl0173.04801MR223309
- [7] W.M. Schmidt, Approximation to algebraic numbers. Enseignement math.17 (1971), 187-253. Zbl0226.10033MR327672