Conjecture de Littlewood et récurrences linéaires

Bernard de Mathan

Journal de théorie des nombres de Bordeaux (2003)

  • Volume: 15, Issue: 1, page 249-266
  • ISSN: 1246-7405

Abstract

top
This work is essentially devoted to construct effective examples of pairs of continued fractions ( α , β ) with bounded quotients, such that 1 , α and β are 𝐙 -linearly independent, and satisfying Littlewood’s conjecture.

How to cite

top

de Mathan, Bernard. "Conjecture de Littlewood et récurrences linéaires." Journal de théorie des nombres de Bordeaux 15.1 (2003): 249-266. <http://eudml.org/doc/249094>.

@article{deMathan2003,
abstract = {Ce travail est essentiellement consacré à la construction d’exemples effectifs de couples $(\alpha , \beta )$ de nombres réels à constantes de Markov finies, tels que $1, \alpha $ et $\beta $ soient $\mathbf \{Z\}$-linéairement indépendants, et satisfaisant à la conjecture de Littlewood.},
author = {de Mathan, Bernard},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {effective construction},
language = {fre},
number = {1},
pages = {249-266},
publisher = {Université Bordeaux I},
title = {Conjecture de Littlewood et récurrences linéaires},
url = {http://eudml.org/doc/249094},
volume = {15},
year = {2003},
}

TY - JOUR
AU - de Mathan, Bernard
TI - Conjecture de Littlewood et récurrences linéaires
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 1
SP - 249
EP - 266
AB - Ce travail est essentiellement consacré à la construction d’exemples effectifs de couples $(\alpha , \beta )$ de nombres réels à constantes de Markov finies, tels que $1, \alpha $ et $\beta $ soient $\mathbf {Z}$-linéairement indépendants, et satisfaisant à la conjecture de Littlewood.
LA - fre
KW - effective construction
UR - http://eudml.org/doc/249094
ER -

References

top
  1. [1] J.-P. Allouche, J.L. Davison, M. Queffélec, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory91 (2001), 39-66. Zbl0998.11036MR1869317
  2. [2] J.W.S. Cassels, H.P.F. Swinnerton-Dyer, On the product of three homogeneous linear forms and indefinite ternary quadratic forms. Philos. Trans. Roy. Soc. London, Ser. A, 248 (1955), 73-96. Zbl0065.27905MR70653
  3. [3] L.G. Peck, Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc.67 (1961), 197-201. Zbl0098.26302MR122772
  4. [4] A.D. Pollington, S.L. Velani, On a problem in simultaneous Diophantine approximation: Littlewood's conjecture. Acta Math.185 (2000), 287-306. Zbl0970.11026MR1819996
  5. [5] M. Queffélec, Trcanscendance des fractions continues de Thue-Morse. J. Number Theory73 (1998), 201-211. Zbl0920.11045MR1658023
  6. [6] W.M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals. Acta Math.119 (1967), 27-50. Zbl0173.04801MR223309
  7. [7] W.M. Schmidt, Approximation to algebraic numbers. Enseignement math.17 (1971), 187-253. Zbl0226.10033MR327672

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.