On the structure of the Galois group of the Abelian closure of a number field

Georges Gras[1]

  • [1] Villa la Gardette Chemin Château Gagnière 38520 Le Bourg d’Oisans

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 3, page 635-654
  • ISSN: 1246-7405

Abstract

top
From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields K having isomorphic absolute Abelian Galois groups A K , we study any such issue for arbitrary number fields K . We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some p -adic obstructions coming from the global units of K . By restriction to the p -Sylow subgroups of A K and assuming the Leopoldt conjecture we show that the corresponding study is related to a generalization of the classical notion of p -rational field that we deepen, including numerical viewpoint for quadratic fields.However we obtain (Theorems 2.1 and 3.1) non-trivial information about the structure of A K , for any number field K , by application of results of our book on the p -adic global class field theory.

How to cite

top

Gras, Georges. "On the structure of the Galois group of the Abelian closure of a number field." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 635-654. <http://eudml.org/doc/275767>.

@article{Gras2014,
abstract = {From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields $K$ having isomorphic absolute Abelian Galois groups $A_K$, we study any such issue for arbitrary number fields $K$. We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some $p$-adic obstructions coming from the global units of $K$. By restriction to the $p$-Sylow subgroups of $A_K$ and assuming the Leopoldt conjecture we show that the corresponding study is related to a generalization of the classical notion of $p$-rational field that we deepen, including numerical viewpoint for quadratic fields.However we obtain (Theorems 2.1 and 3.1) non-trivial information about the structure of $A_K$, for any number field $K$, by application of results of our book on the $p$-adic global class field theory.},
affiliation = {Villa la Gardette Chemin Château Gagnière 38520 Le Bourg d’Oisans},
author = {Gras, Georges},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Class field theory; Abelian closures of number fields; $p$-ramification; $p$-rational fields; Abelian profinite groups; Group extensions},
language = {eng},
month = {12},
number = {3},
pages = {635-654},
publisher = {Société Arithmétique de Bordeaux},
title = {On the structure of the Galois group of the Abelian closure of a number field},
url = {http://eudml.org/doc/275767},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Gras, Georges
TI - On the structure of the Galois group of the Abelian closure of a number field
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 635
EP - 654
AB - From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields $K$ having isomorphic absolute Abelian Galois groups $A_K$, we study any such issue for arbitrary number fields $K$. We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some $p$-adic obstructions coming from the global units of $K$. By restriction to the $p$-Sylow subgroups of $A_K$ and assuming the Leopoldt conjecture we show that the corresponding study is related to a generalization of the classical notion of $p$-rational field that we deepen, including numerical viewpoint for quadratic fields.However we obtain (Theorems 2.1 and 3.1) non-trivial information about the structure of $A_K$, for any number field $K$, by application of results of our book on the $p$-adic global class field theory.
LA - eng
KW - Class field theory; Abelian closures of number fields; $p$-ramification; $p$-rational fields; Abelian profinite groups; Group extensions
UR - http://eudml.org/doc/275767
ER -

References

top
  1. A. Angelakis and P. Stevenhagen, Absolute abelian Galois groups of imaginary quadratic fields, In: proceedings volume of ANTS-X, UC San Diego 2012, E. Howe and K. Kedlaya (eds), OBS 1 (2013). Zbl06488031
  2. A. Charifi, Groupes de torsion attachés aux extensions Abéliennes p -ramifiées maximales (cas des corps totalement réels et des corps quadratiques imaginaires), Thèse de 3 e cycle, Mathématiques, Université de Franche-Comté (1982), 50 pp. 
  3. J. Coates, p -adic L -functions and Iwasawa’s theory, In: Proc. Durham Symposium 1975, New York-London (1977), 269–353. Zbl0393.12027MR460282
  4. G. Gras et J-F. Jaulent, Sur les corps de nombres réguliers, Math. Z. 202, (1989), 3, 343–365. Zbl0704.11040MR1017575
  5. G. Gras, Class Field Theory: from theory to practice, SMM, Springer-Verlag 2003, second corrected printing (2005). Zbl1019.11032MR1941965
  6. G. Gras, Remarks on K 2 of number fields, Jour. Number Theory 23, (1986), 3, 322–335. Zbl0589.12010MR846962
  7. G. Gras, Sur les 2 -extensions d’un corps quadratique imaginaire, Ann. Inst. Fourier, 33, (1983), 4, 1–18. Zbl0501.12016MR727521
  8. K. Hatada, Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at 2 - p , Comment. Math. Univ. St. Paul. 36, (1987), 1, 41–51. Zbl0641.12008MR892379
  9. J-F. Jaulent, Théorie -adique globale du corps de classes, J. Théorie des Nombres de Bordeaux 10, (1998), 2, 355–397. Zbl0938.11052MR1828250
  10. J-F. Jaulent et T. Nguyen Quang Do, Corps p -rationnels, corps p -réguliers et ramification restreinte, J. Théorie des Nombres de Bordeaux 5, (1993), 2, 343–363. Zbl0957.11046MR1265910
  11. H. Koch, (Parshin, A.N., Šafarevič, I.R., and Gamkrelidze, R.V., Eds.), Number theory II, Algebraic number theory, Encycl. of Math. Sci., vol. 62, Springer-Verlag 1992; second printing: Algebraic Number Theory, Springer-Verlag 1997. Zbl0819.11044MR1760632
  12. T. Kubota, Galois group of the maximal abelian extension of an algebraic number field, Nagoya Math. J. 12, (1957), 177–189. Zbl0079.26803MR98077
  13. A. Movahhedi et T. Nguyen Quang Do, Sur l’arithmétique des corps de nombres p -rationnels, Sém. Théorie des Nombres, Paris (1987/89), Progress in Math. 81, Birkhäuser (1990), 155–200. Zbl0703.11059MR1042770
  14. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, P.W.N. 1974; second revised and extended edition: P.W.N. and Springer-Verlag 1990; third edition: Springer Monographs in Math., Springer-Verlag 2004. Zbl1159.11039MR2078267
  15. M. Onabe, On the isomorphisms of the Galois groups of the maximal Abelian extensions of imaginary quadratic fields, Natur. Sci. Rep. Ochanomizu Univ. 27, (1976), 2, 155–161. Zbl0354.12004MR435037
  16. Pari/gp, Version 2.5.3, K. Belabas and al., Laboratoire A2X, Université de Bordeaux I. 
  17. F. Pitoun and F. Varescon, Computing the torsion of the p -ramified module of a number field, Math. Comp., published electronically (2014), 84, (2015), 371–383. Zbl1317.11110MR3266966
  18. J-P. Serre, Sur le résidu de la fonction zêta p -adique d’un corps de nombres, C.R. Acad. Sci. Paris 287, (1978), Série I, 183–188. Zbl0393.12026MR506177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.