On the structure of the Galois group of the Abelian closure of a number field
Georges Gras[1]
- [1] Villa la Gardette Chemin Château Gagnière 38520 Le Bourg d’Oisans
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 3, page 635-654
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGras, Georges. "On the structure of the Galois group of the Abelian closure of a number field." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 635-654. <http://eudml.org/doc/275767>.
@article{Gras2014,
abstract = {From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields $K$ having isomorphic absolute Abelian Galois groups $A_K$, we study any such issue for arbitrary number fields $K$. We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some $p$-adic obstructions coming from the global units of $K$. By restriction to the $p$-Sylow subgroups of $A_K$ and assuming the Leopoldt conjecture we show that the corresponding study is related to a generalization of the classical notion of $p$-rational field that we deepen, including numerical viewpoint for quadratic fields.However we obtain (Theorems 2.1 and 3.1) non-trivial information about the structure of $A_K$, for any number field $K$, by application of results of our book on the $p$-adic global class field theory.},
affiliation = {Villa la Gardette Chemin Château Gagnière 38520 Le Bourg d’Oisans},
author = {Gras, Georges},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Class field theory; Abelian closures of number fields; $p$-ramification; $p$-rational fields; Abelian profinite groups; Group extensions},
language = {eng},
month = {12},
number = {3},
pages = {635-654},
publisher = {Société Arithmétique de Bordeaux},
title = {On the structure of the Galois group of the Abelian closure of a number field},
url = {http://eudml.org/doc/275767},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Gras, Georges
TI - On the structure of the Galois group of the Abelian closure of a number field
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 635
EP - 654
AB - From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields $K$ having isomorphic absolute Abelian Galois groups $A_K$, we study any such issue for arbitrary number fields $K$. We show that this kind of property is probably not easily generalizable, apart from imaginary quadratic fields, because of some $p$-adic obstructions coming from the global units of $K$. By restriction to the $p$-Sylow subgroups of $A_K$ and assuming the Leopoldt conjecture we show that the corresponding study is related to a generalization of the classical notion of $p$-rational field that we deepen, including numerical viewpoint for quadratic fields.However we obtain (Theorems 2.1 and 3.1) non-trivial information about the structure of $A_K$, for any number field $K$, by application of results of our book on the $p$-adic global class field theory.
LA - eng
KW - Class field theory; Abelian closures of number fields; $p$-ramification; $p$-rational fields; Abelian profinite groups; Group extensions
UR - http://eudml.org/doc/275767
ER -
References
top- A. Angelakis and P. Stevenhagen, Absolute abelian Galois groups of imaginary quadratic fields, In: proceedings volume of ANTS-X, UC San Diego 2012, E. Howe and K. Kedlaya (eds), OBS 1 (2013). Zbl06488031
- A. Charifi, Groupes de torsion attachés aux extensions Abéliennes -ramifiées maximales (cas des corps totalement réels et des corps quadratiques imaginaires), Thèse de cycle, Mathématiques, Université de Franche-Comté (1982), 50 pp.
- J. Coates, -adic -functions and Iwasawa’s theory, In: Proc. Durham Symposium 1975, New York-London (1977), 269–353. Zbl0393.12027MR460282
- G. Gras et J-F. Jaulent, Sur les corps de nombres réguliers, Math. Z. 202, (1989), 3, 343–365. Zbl0704.11040MR1017575
- G. Gras, Class Field Theory: from theory to practice, SMM, Springer-Verlag 2003, second corrected printing (2005). Zbl1019.11032MR1941965
- G. Gras, Remarks on of number fields, Jour. Number Theory 23, (1986), 3, 322–335. Zbl0589.12010MR846962
- G. Gras, Sur les -extensions d’un corps quadratique imaginaire, Ann. Inst. Fourier, 33, (1983), 4, 1–18. Zbl0501.12016MR727521
- K. Hatada, Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at , Comment. Math. Univ. St. Paul. 36, (1987), 1, 41–51. Zbl0641.12008MR892379
- J-F. Jaulent, Théorie -adique globale du corps de classes, J. Théorie des Nombres de Bordeaux 10, (1998), 2, 355–397. Zbl0938.11052MR1828250
- J-F. Jaulent et T. Nguyen Quang Do, Corps -rationnels, corps -réguliers et ramification restreinte, J. Théorie des Nombres de Bordeaux 5, (1993), 2, 343–363. Zbl0957.11046MR1265910
- H. Koch, (Parshin, A.N., Šafarevič, I.R., and Gamkrelidze, R.V., Eds.), Number theory II, Algebraic number theory, Encycl. of Math. Sci., vol. 62, Springer-Verlag 1992; second printing: Algebraic Number Theory, Springer-Verlag 1997. Zbl0819.11044MR1760632
- T. Kubota, Galois group of the maximal abelian extension of an algebraic number field, Nagoya Math. J. 12, (1957), 177–189. Zbl0079.26803MR98077
- A. Movahhedi et T. Nguyen Quang Do, Sur l’arithmétique des corps de nombres -rationnels, Sém. Théorie des Nombres, Paris (1987/89), Progress in Math. 81, Birkhäuser (1990), 155–200. Zbl0703.11059MR1042770
- W. Narkiewicz, Elementary and analytic theory of algebraic numbers, P.W.N. 1974; second revised and extended edition: P.W.N. and Springer-Verlag 1990; third edition: Springer Monographs in Math., Springer-Verlag 2004. Zbl1159.11039MR2078267
- M. Onabe, On the isomorphisms of the Galois groups of the maximal Abelian extensions of imaginary quadratic fields, Natur. Sci. Rep. Ochanomizu Univ. 27, (1976), 2, 155–161. Zbl0354.12004MR435037
- Pari/gp, Version 2.5.3, K. Belabas and al., Laboratoire A2X, Université de Bordeaux I.
- F. Pitoun and F. Varescon, Computing the torsion of the -ramified module of a number field, Math. Comp., published electronically (2014), 84, (2015), 371–383. Zbl1317.11110MR3266966
- J-P. Serre, Sur le résidu de la fonction zêta -adique d’un corps de nombres, C.R. Acad. Sci. Paris 287, (1978), Série I, 183–188. Zbl0393.12026MR506177
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.