Displaying similar documents to “On the structure of the Galois group of the Abelian closure of a number field”

Principalization algorithm via class group structure

Daniel C. Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For an algebraic number field K with 3 -class group Cl 3 ( K ) of type ( 3 , 3 ) , the structure of the 3 -class groups Cl 3 ( N i ) of the four unramified cyclic cubic extension fields N i , 1 i 4 , of K is calculated with the aid of presentations for the metabelian Galois group G 3 2 ( K ) = Gal ( F 3 2 ( K ) | K ) of the second Hilbert 3 -class field F 3 2 ( K ) of K . In the case of a quadratic base field K = ( D ) it is shown that the structure of the 3 -class groups of the four S 3 -fields N 1 , ... , N 4 frequently determines the type of principalization of the 3 -class group of K in N 1 , ... , N 4 . This...

The distribution of second p -class groups on coclass graphs

Daniel C. Mayer (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

General concepts and strategies are developed for identifying the isomorphism type of the second p -class group G = Gal ( F p 2 ( K ) | K ) , that is the Galois group of the second Hilbert p -class field F p 2 ( K ) , of a number field K , for a prime p . The isomorphism type determines the position of G on one of the coclass graphs 𝒢 ( p , r ) , r 0 , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field K and of its p -class group Cl p ( K ) , the position of G is restricted to certain admissible branches...

An explicit computation of p -stabilized vectors

Michitaka MIYAUCHI, Takuya YAMAUCHI (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we give a concrete method to compute p -stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over p -adic fields. An application to the global setting is also discussed. In particular, we give an explicit p -stabilized form of a Saito-Kurokawa lift.

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2016)

Mathematica Bohemica

Similarity:

We study the capitulation of 2 -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields 𝕜 = ( 2 p q , i ) , where i = - 1 and p - q 1 ( mod 4 ) are different primes. For each of the three quadratic extensions 𝕂 / 𝕜 inside the absolute genus field 𝕜 ( * ) of 𝕜 , we determine a fundamental system of units and then compute the capitulation kernel of 𝕂 / 𝕜 . The generators of the groups Am s ( 𝕜 / F ) and Am ( 𝕜 / F ) are also determined from which we deduce that 𝕜 ( * ) is smaller than the relative genus field ( 𝕜 / ( i ) ) * . Then we prove...

Unit vector fields on antipodally punctured spheres: big index, big volume

Fabiano G. B. Brito, Pablo M. Chacón, David L. Johnson (2008)

Bulletin de la Société Mathématique de France

Similarity:

We establish in this paper a lower bound for the volume of a unit vector field v defined on 𝐒 n { ± x } , n = 2 , 3 . This lower bound is related to the sum of the absolute values of the indices of v at x and - x .