Modular lattices from finite projective planes
- [1] Department of Mathematics Iowa State University Ames, IA 50011
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 269-279
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBasak, Tathagata. "Modular lattices from finite projective planes." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 269-279. <http://eudml.org/doc/275779>.
@article{Basak2014,
abstract = {Using the geometry of the projective plane over the finite field $\mathbb\{F\}_q$, we construct a Hermitian Lorentzian lattice $L_\{q\}$ of dimension $(q^\{2\} + q + 2)$ defined over a certain number ring $\mathcal\{O\}$ that depends on $q$. We show that infinitely many of these lattices are $p$-modular, that is, $p L^\{\prime \}_\{q\} = L_\{q\}$, where $p$ is some prime in $\mathcal\{O\}$ such that $\vert p\vert ^\{2\} =q$.The Lorentzian lattices $L_q$ sometimes lead to construction of interesting positive definite lattices. In particular, if $q \equiv 3 \bmod 4$ is a rational prime such that $(q^2 + q + 1)$ is norm of some element in $\mathbb\{Q\}[\sqrt\{-q\}]$, then we find a $2q(q+1)$ dimensional even unimodular positive definite integer lattice $M_\{q\}$ such that $\operatorname\{Aut\}(M_q) \supseteq \operatorname\{PGL\}(3,\mathbb\{F\}_q)$. We find that $M_3$ is the Leech lattice.},
affiliation = {Department of Mathematics Iowa State University Ames, IA 50011},
author = {Basak, Tathagata},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {269-279},
publisher = {Société Arithmétique de Bordeaux},
title = {Modular lattices from finite projective planes},
url = {http://eudml.org/doc/275779},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Basak, Tathagata
TI - Modular lattices from finite projective planes
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 269
EP - 279
AB - Using the geometry of the projective plane over the finite field $\mathbb{F}_q$, we construct a Hermitian Lorentzian lattice $L_{q}$ of dimension $(q^{2} + q + 2)$ defined over a certain number ring $\mathcal{O}$ that depends on $q$. We show that infinitely many of these lattices are $p$-modular, that is, $p L^{\prime }_{q} = L_{q}$, where $p$ is some prime in $\mathcal{O}$ such that $\vert p\vert ^{2} =q$.The Lorentzian lattices $L_q$ sometimes lead to construction of interesting positive definite lattices. In particular, if $q \equiv 3 \bmod 4$ is a rational prime such that $(q^2 + q + 1)$ is norm of some element in $\mathbb{Q}[\sqrt{-q}]$, then we find a $2q(q+1)$ dimensional even unimodular positive definite integer lattice $M_{q}$ such that $\operatorname{Aut}(M_q) \supseteq \operatorname{PGL}(3,\mathbb{F}_q)$. We find that $M_3$ is the Leech lattice.
LA - eng
UR - http://eudml.org/doc/275779
ER -
References
top- D. Allcock, The Leech lattice and complex hyperbolic reflections. Invent. Math. 140 (2000), 283–301. Zbl1012.11053MR1756997
- D. Allcock, A monstrous proposal. Groups and Symmetries: From neolithic Scots to John McKay (2009), AMS and Centre de Recherches Math士atiques. arXiv:math/0606043. Zbl1193.20015MR2500552
- D. Allcock, On the complex reflection group. J. Alg. 322 (2009), 1454–1465 Zbl1269.20029MR2543618
- R. Bacher and B. Venkov, Lattices and association schemes: A unimodular example without roots in dimension 28. Ann. Inst. Fourier, Grenoble. 45, 5 (1995), 1163–1176. Zbl0843.11033MR1370742
- T. Basak, The complex Lorentzian Leech lattice and the bimonster. J. Alg. 309, no. 1 (2007), 32–56. Zbl1125.11040MR2301231
- T. Basak, Reflection group of the quaternionic Lorentzian Leech lattice. J. Alg. 309, no. 1 (2007), 57–68. Zbl1125.11041MR2301232
- T. Basak, The complex Lorentzian Leech lattice and the bimonster (II). preprint (2012), arXiv:0811.0062, submitted. Zbl06551089MR2301231
- A. I. Bondal, Invariant lattices in Lie algebras of type (Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh. 93, no. 1 (1986), 52–54. Zbl0599.17006MR831641
- J. H. Conway, S. P. Norton and L. H. Soicher, The bimonster, the group , and the projective plane of order 3. “ Computers in Algebra" (M. C. Tangara, Ed.), Lecture Notes in Pure and Applied Mathematics, No 111, Dekker, New York, (1988), 27–50. Zbl0693.20014MR1060755
- J. H. Conway and C. S. Simons, 26 Implies the Bimonster. J. Alg. 235 (2001), 805–814. Zbl0970.20010MR1805481
- J. H. Conway, and N. J. A. Sloane, Sphere Packings, Lattices and Groups 3rd Ed. Springer-Verlag, 1998. Zbl0785.11036
- A. Fröhlich and M.J. Taylor, Algebraic number theory. Cambridge University Press, 1991. Zbl0744.11001MR1215934
- R. L. Graham and J. Macwilliams, On the number of information symbols in the difference set cyclic codes. The Bell System Technical Journal, Vol XLV, No. 7, 1966. Zbl0166.15402MR201218
- A. A. Ivanov, A geometric characterization of the monster. Groups, Combinatorics and Geometry, edited by M. Liebeck and J. Saxl, London Mathematical Society Lecture Note Series, No. 165, Cambridge Univ. Press, (1992), 46–62. Zbl0821.20005MR1200249
- A. A. Ivanov, –groups via transitive extension. J. Alg. 218 (1999) 412–435. Zbl0939.20031MR1705810
- A. I. Kostrikin and H. T. Pham, Orthogonal decompositions and integral lattices. Walter de Gruyter, 1994. Zbl0855.11033MR1308713
- G. Nebe and K. Schindelar, S-extremal strongly modular lattices. J. Théor. Nombres Bordeaux, 19 no. 3, (2007), 68–701. Zbl1196.11097MR2388794
- J. P. Serre, A course in Arithmetic. Springer-Verlag, 1973. Zbl0432.10001MR344216
- J. Singer, A theorem in finite projective geometry and some applications to number theory. Trans. A. M. S. 43, No. 3 (1938), 377–385. Zbl64.0972.04MR1501951
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.