Lattices and association schemes : a unimodular example without roots in dimension 28

Roland Bacher; Boris Venkov

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 5, page 1163-1176
  • ISSN: 0373-0956

Abstract

top
Some interesting lattices can be constructed using association schemes. We illustrate this by a unimodular lattice without roots of dimension 28 which admits Sp ( 6 , 𝔽 3 ) · 2 as its automorphism group.

How to cite

top

Bacher, Roland, and Venkov, Boris. "Lattices and association schemes : a unimodular example without roots in dimension 28." Annales de l'institut Fourier 45.5 (1995): 1163-1176. <http://eudml.org/doc/75154>.

@article{Bacher1995,
abstract = {Some interesting lattices can be constructed using association schemes. We illustrate this by a unimodular lattice without roots of dimension 28 which admits $\{\rm Sp\}(6,\{\Bbb F\}_3)\cdot 2$ as its automorphism group.},
author = {Bacher, Roland, Venkov, Boris},
journal = {Annales de l'institut Fourier},
keywords = {lattice; association scheme; symplectic space; spread},
language = {eng},
number = {5},
pages = {1163-1176},
publisher = {Association des Annales de l'Institut Fourier},
title = {Lattices and association schemes : a unimodular example without roots in dimension 28},
url = {http://eudml.org/doc/75154},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Bacher, Roland
AU - Venkov, Boris
TI - Lattices and association schemes : a unimodular example without roots in dimension 28
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1163
EP - 1176
AB - Some interesting lattices can be constructed using association schemes. We illustrate this by a unimodular lattice without roots of dimension 28 which admits ${\rm Sp}(6,{\Bbb F}_3)\cdot 2$ as its automorphism group.
LA - eng
KW - lattice; association scheme; symplectic space; spread
UR - http://eudml.org/doc/75154
ER -

References

top
  1. [Ar] E. ARTIN, Algèbre géométrique, Gauthiers-Villars, 1962. Zbl0103.25004
  2. [Atlas] J.H. CONWAY, R.T. CURTIS, S.P. NORTON, R.A. PARKER, R.A. WILSON, Atlas of Finite Groups, Oxford University Press, 1985. Zbl0568.20001
  3. [Ba] R. BACHER, Tables de réseaux entiers unimodulaires construits comme k-voisins de ℤn (Preprint), Genève, 1994. Zbl0906.11033
  4. [BCN] A.E. BROUWER, A.M. COHEN, A. NEUMAIER, Distance-Regular Graphs, Springer, 1989. Zbl0747.05073MR90e:05001
  5. [BI] E. BANNAI, T. ITO, Algebraic Combinatorics I: Association schemes, Benjamin, 1984. Zbl0555.05019MR87m:05001
  6. [Bo] R.E. BORCHERDS, The Leech lattice and other lattices (Thesis), Trinity College, Cambridge, 1984. 
  7. [Bo1] R.E. BORCHERDS, letter (January 1994). 
  8. [BV] R. BACHER, B. VENKOV, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, preprint. 
  9. [Ge] P. GÉRARDIN, Weil representations associated to finite fields, J. Algebra, 46 (1977), 54-101. Zbl0359.20008MR57 #470
  10. [Gr] B.H. GROSS, Group representations and lattices, J. Amer. Math. Soc., 3 (1990), 929-960. Zbl0745.11035MR92a:11077
  11. [ST] R. SCHARLAU, P.H. TIEP, Symplectic groups, symplectic spreads, codes and unimodular lattices, preprint. Zbl0887.20004
  12. [Th] J.G. THOMPSON, Finite groups and even lattices, J. Algebra, 38 (1976), 523-524. Zbl0344.20001MR53 #3108
  13. [Wa1] H.N. WARD, Representations of symplectic Groups, J. Algebra, 20 (1972), 182-195. Zbl0239.20013MR44 #4116
  14. [Wa2] H.N. WARD, Quadratic Residue Codes and Symplectic Groups, J. Algebra, 29 (1974), 150-171. Zbl0276.94002MR56 #2648

NotesEmbed ?

top

You must be logged in to post comments.