Lattices and association schemes : a unimodular example without roots in dimension 28

Roland Bacher; Boris Venkov

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 5, page 1163-1176
  • ISSN: 0373-0956

Abstract

top
Some interesting lattices can be constructed using association schemes. We illustrate this by a unimodular lattice without roots of dimension 28 which admits Sp ( 6 , 𝔽 3 ) · 2 as its automorphism group.

How to cite

top

Bacher, Roland, and Venkov, Boris. "Lattices and association schemes : a unimodular example without roots in dimension 28." Annales de l'institut Fourier 45.5 (1995): 1163-1176. <http://eudml.org/doc/75154>.

@article{Bacher1995,
abstract = {Some interesting lattices can be constructed using association schemes. We illustrate this by a unimodular lattice without roots of dimension 28 which admits $\{\rm Sp\}(6,\{\Bbb F\}_3)\cdot 2$ as its automorphism group.},
author = {Bacher, Roland, Venkov, Boris},
journal = {Annales de l'institut Fourier},
keywords = {lattice; association scheme; symplectic space; spread},
language = {eng},
number = {5},
pages = {1163-1176},
publisher = {Association des Annales de l'Institut Fourier},
title = {Lattices and association schemes : a unimodular example without roots in dimension 28},
url = {http://eudml.org/doc/75154},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Bacher, Roland
AU - Venkov, Boris
TI - Lattices and association schemes : a unimodular example without roots in dimension 28
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 5
SP - 1163
EP - 1176
AB - Some interesting lattices can be constructed using association schemes. We illustrate this by a unimodular lattice without roots of dimension 28 which admits ${\rm Sp}(6,{\Bbb F}_3)\cdot 2$ as its automorphism group.
LA - eng
KW - lattice; association scheme; symplectic space; spread
UR - http://eudml.org/doc/75154
ER -

References

top
  1. [Ar] E. ARTIN, Algèbre géométrique, Gauthiers-Villars, 1962. Zbl0103.25004
  2. [Atlas] J.H. CONWAY, R.T. CURTIS, S.P. NORTON, R.A. PARKER, R.A. WILSON, Atlas of Finite Groups, Oxford University Press, 1985. Zbl0568.20001
  3. [Ba] R. BACHER, Tables de réseaux entiers unimodulaires construits comme k-voisins de ℤn (Preprint), Genève, 1994. Zbl0906.11033
  4. [BCN] A.E. BROUWER, A.M. COHEN, A. NEUMAIER, Distance-Regular Graphs, Springer, 1989. Zbl0747.05073MR90e:05001
  5. [BI] E. BANNAI, T. ITO, Algebraic Combinatorics I: Association schemes, Benjamin, 1984. Zbl0555.05019MR87m:05001
  6. [Bo] R.E. BORCHERDS, The Leech lattice and other lattices (Thesis), Trinity College, Cambridge, 1984. 
  7. [Bo1] R.E. BORCHERDS, letter (January 1994). 
  8. [BV] R. BACHER, B. VENKOV, Réseaux entiers unimodulaires sans racine en dimension 27 et 28, preprint. 
  9. [Ge] P. GÉRARDIN, Weil representations associated to finite fields, J. Algebra, 46 (1977), 54-101. Zbl0359.20008MR57 #470
  10. [Gr] B.H. GROSS, Group representations and lattices, J. Amer. Math. Soc., 3 (1990), 929-960. Zbl0745.11035MR92a:11077
  11. [ST] R. SCHARLAU, P.H. TIEP, Symplectic groups, symplectic spreads, codes and unimodular lattices, preprint. Zbl0887.20004
  12. [Th] J.G. THOMPSON, Finite groups and even lattices, J. Algebra, 38 (1976), 523-524. Zbl0344.20001MR53 #3108
  13. [Wa1] H.N. WARD, Representations of symplectic Groups, J. Algebra, 20 (1972), 182-195. Zbl0239.20013MR44 #4116
  14. [Wa2] H.N. WARD, Quadratic Residue Codes and Symplectic Groups, J. Algebra, 29 (1974), 150-171. Zbl0276.94002MR56 #2648

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.