Macroscopic models of collective motion and self-organization
Pierre Degond[1]; Amic Frouvelle[2]; Jian-Guo Liu[3]; Sebastien Motsch[4]; Laurent Navoret[5]
- [1] Université de Toulouse; UPS, INSA, UT1, UTM Institut de Mathématiques de Toulouse F-31062 Toulouse France CNRS; Institut de Mathématiques de Toulouse UMR 5219 F-31062 Toulouse France
- [2] CEREMADE, UMR CNRS 7534 Université Paris-Dauphine 75775 Paris Cedex 16 France
- [3] Department of Physics and Department of Mathematics Duke University Durham, NC 27708 USA
- [4] Center for Scientific Computation and Mathematical Modeling (CSCAMM) University of Maryland College Park, MD 20742 USA
- [5] Institut de Recherche Mathématique Avancée de Strasbourg CNRS UMR 7501 and Université de Strasbourg 7 rue René Descartes, 67084 Strasbourg Cedex France
Séminaire Laurent Schwartz — EDP et applications (2012-2013)
- Volume: 2012-2013, page 1-27
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topDegond, Pierre, et al. "Macroscopic models of collective motion and self-organization." Séminaire Laurent Schwartz — EDP et applications 2012-2013 (2012-2013): 1-27. <http://eudml.org/doc/275795>.
@article{Degond2012-2013,
abstract = {In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view of its possible extensions to other kinds of collective motion.},
affiliation = {Université de Toulouse; UPS, INSA, UT1, UTM Institut de Mathématiques de Toulouse F-31062 Toulouse France CNRS; Institut de Mathématiques de Toulouse UMR 5219 F-31062 Toulouse France; CEREMADE, UMR CNRS 7534 Université Paris-Dauphine 75775 Paris Cedex 16 France; Department of Physics and Department of Mathematics Duke University Durham, NC 27708 USA; Center for Scientific Computation and Mathematical Modeling (CSCAMM) University of Maryland College Park, MD 20742 USA; Institut de Recherche Mathématique Avancée de Strasbourg CNRS UMR 7501 and Université de Strasbourg 7 rue René Descartes, 67084 Strasbourg Cedex France},
author = {Degond, Pierre, Frouvelle, Amic, Liu, Jian-Guo, Motsch, Sebastien, Navoret, Laurent},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {individual-based models; self-propelled particles; self-alignment; Viscek model; mean-field kinetic model; Fokker-Planck equation; macroscopic limit; von Mises-Fisher distribution; self-organized hydrodynamics},
language = {eng},
pages = {1-27},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Macroscopic models of collective motion and self-organization},
url = {http://eudml.org/doc/275795},
volume = {2012-2013},
year = {2012-2013},
}
TY - JOUR
AU - Degond, Pierre
AU - Frouvelle, Amic
AU - Liu, Jian-Guo
AU - Motsch, Sebastien
AU - Navoret, Laurent
TI - Macroscopic models of collective motion and self-organization
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2012-2013
SP - 1
EP - 27
AB - In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view of its possible extensions to other kinds of collective motion.
LA - eng
KW - individual-based models; self-propelled particles; self-alignment; Viscek model; mean-field kinetic model; Fokker-Planck equation; macroscopic limit; von Mises-Fisher distribution; self-organized hydrodynamics
UR - http://eudml.org/doc/275795
ER -
References
top- I. Aoki, A simulation study on the schooling mechanism in fish, Bulletin of the Japan Society of Scientific Fisheries, 48 (1982) 1081-1088.
- C. Appert-Rolland, P. Degond, S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heterog. Media, 6 (2011) 351-381. Zbl1260.90051MR2826750
- A. Aw, M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60 (2000) 916-938 Zbl0957.35086MR1750085
- P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of noise, Phys. Rev. Lett., 59 (1987) 381-384. Zbl1230.37103MR949160
- A. Barbaro, P. Degond, Phase transition and diffusion among socially interacting self-propelled agents, Discrete Contin. Dyn. Syst. Ser. B, to appear. Zbl1304.35412
- A. Baskaran, M. C. Marchetti, Nonequilibrium statistical mechanics of self-propelled hard rods, J. Stat. Mech. Theory Exp., (2010) P04019.
- S. Bazazi, J. Buhl, J. J. Hale, M. L. Anstey, G. A. Sword, S. J. Simpson, I. D. Couzin, Collective Motion and Cannibalism in Locust Migratory Bands, Current Biology 18 (2008) 735-739.
- F. Berthelin, P. Degond, M. Delitala, M. Rascle, A model for the formation and evolution of traffic jams, Arch. Rat. Mech. Anal., 187 (2008) 185-220. Zbl1153.90003MR2366138
- F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, J. Royer, M. Rascle, A Traffic-Flow Model with Constraints for the Modeling of Traffic Jams, Math. Models Methods Appl. Sci., 18 Suppl. (2008) 1269-1298. Zbl1197.35159MR2438216
- E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis, J. Phys. A: Math. Theor., 42 (2009) 445001. Zbl05634775
- F. Bolley, J. A. Cañizo, J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2011) 339-343. Zbl1239.91127MR2855983
- F. Brown, Micromagnetics, Wiley, New York, 1963.
- E. Carlen, R. Chatelin, P. Degond, and B Wennberg, Kinetic hierarchy and propagation of chaos in biological swarm models, Phys. D, appeared online.
- E. Carlen, P. Degond, and B Wennberg, Kinetic limits for pair-interaction driven master equations and biological swarm models, Math. Models Methods Appl. Sci., 23 (2013) 1339-1376. Zbl1294.35173
- J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010) 218-236. Zbl1223.35058MR2596552
- H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E 77 (2008) 046113 (15 p.)
- G. Q. Chen, C. D. Levermore, T. P. Liu, Hyperbolic conservation laws with stiff relaxation and entropy, Comm. Pure Appl. Math., 47 (1994) 787-830. Zbl0806.35112MR1280989
- Y-L. Chuang, M. R. D’Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Physica D, 232 (2007) 33-47. Zbl05182405MR2369988
- I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, Collective Memory and Spatial Sorting in Animal Groups, J. theor. Biol., 218 (2002), 1-11. MR2027139
- F. Cucker, Er. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008) 278-296. Zbl1273.91404MR2401690
- F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007) 852-862. MR2324245
- A. Cziròk, E. Ben-Jacob, I. Cohen, T. Vicsek, Formation of complex bacterial colonies via self-generated vortices, Phys. Rev. E, 54 (1996) 1791-18091.
- P. Degond, M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinet. Relat. Models, 1 (2008) 279-293. Zbl1153.90356MR2393278
- P. Degond, A. Frouvelle, J-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonlinear Sci., appeared online. Zbl1275.35019
- P. Degond, A. Frouvelle, J.-G. Liu, A note on phase transitions for the Smoluchowski equation with dipolar potential, submitted.
- P. Degond, A. Frouvelle, J-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, preprint. Zbl1311.82017
- P. Degond, J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013) 299-319. Zbl1286.93026
- P. Degond, J. Hua, L. Navoret, Numerical simulations of the Euler system with congestion constraint, J. Comput. Phys., 230 (2011) 8057-8088. Zbl05992228MR2835410
- P. Degond, J-G. Liu, Hydrodynamics of self-alignment interactions with precession and derivation of the Landau-Lifschitz-Gilbert equation, Math. Models Methods Appl. Sci., 22 Suppl. 1 (2012) 1140001 (18 pages). Zbl06047131MR2974181
- P. Degond, J-G. Liu, S. Motsch, V. Panferov, Hydrodynamic models of self-organized dynamics: derivation and existence theory, Methods Appl. Anal., to appear. Zbl1278.35153
- P. Degond, J.-G. Liu, C. Ringhofer, A Nash equilibrium macroscopic closure for kinetic models coupled with Mean-Field Games, submitted. http://arxiv.org/abs/1212.6130.
- P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 Suppl. (2008) 1193-1215. Zbl1157.35492MR2438213
- P. Degond, S. Motsch, Large scale dynamics of the Persistent Turning Walker model of fish behavior, J. Stat. Phys., 131 (2008) 989-1021. Zbl1214.82075MR2407377
- P. Degond, S. Motsch, A macroscopic model for a system of swarming agents using curvature control, J. Stat. Phys., 143 (2011) 685-714 Zbl1222.82071MR2800660
- P. Degond, L. Navoret, R. Bon, D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness, J. Stat. Phys., 138 (2010) 85-125. Zbl1187.82086
- P. Degond, T. Yang, Diffusion in a continuum model of self-propelled particles with alignment interaction, Math. Models Methods Appl. Sci., 20 Suppl. (2010) 1459-1490. Zbl05800503
- M. L. Domeier, P. L. Colin, Tropical reef fish spawning aggregations: defined and reviewed, Bulletin of Marine Science, 60 (1997) 698-726.
- A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Mod. Meth. Appl. Sci., 22 (2012) 1250011 (40 p.). Zbl1241.35200MR2924786
- A. Frouvelle, J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition, SIAM J. Math. Anal., 44 (2012) 791-826. Zbl1248.35097MR2914250
- J. Gautrais, C. Jost, M. Soria, A. Campo, S. Motsch, R. Fournier, S. Blanco, G. Theraulaz, Analyzing fish movement as a persistent turning walker, J. Math. Biol., 58 (2009) 429-445. Zbl1153.92038MR2470196
- J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria, H. Chaté, G. Theraulaz, Deciphering interactions in moving animal groups. Plos Comput. Biol., 8 (2012) e1002678. MR2993806
- S. -Y. Ha, J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009) 297-325. Zbl1177.92003MR2536440
- S.-Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1 (2008) 415-435. Zbl05377268MR2425606
- E. P. Hsu, Stochastic Analysis on Manifolds, Graduate Series in Mathematics, American Mathematical Society, 2002. Zbl0994.58019MR1882015
- A. Khuong, G. Theraulaz, C. Jost, A. Perna, J. Gautrais, A computational model of ant nest morphogenesis, in “Advances in Artificial Life, ECAL 2011 - Synthesis and Simulation of Living Systems”, MIT Press, 2011, pp. 404-411.
- P.L. LeFloch. Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Comm. Partial Differential Equations, 13 (1988) 669-727. Zbl0683.35049MR934378
- A. Mogilner, L. Edelstein-Keshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003) 353-389. Zbl1054.92053MR2024502
- J. Monod, Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology, Alfred A. Knopf, New York, 1971.
- S. Motsch, L. Navoret, Numerical simulations of a non-conservative hyperbolic system with geometric constraints describing swarming behavior, Multiscale Model. Simul., 9 (2011) 1253-1275. Zbl1251.35172MR2846932
- S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011) 923-947. Zbl1230.82037MR2836613
- V. V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR 1 (1961) 267-279. MR147083
- J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 58 (2007) 694-719. Zbl1311.92196MR2375291
- J. Toner and Y. Tu, Flocks, Long-range order in a two-dimensional dynamical XY model: how birds fly together, Phys. Rev. Lett., 75 (1995) 4326-4329.
- J. Toner, Y. Tu and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals of Physics, 318 (2005) 170-244 Zbl1126.82347MR2148645
- Y. Tu, J. Toner and M. Ulm, Sound waves and the absence of Galilean invariance in flocks, Phys. Rev. Lett., 80 (1998) 4819-4822.
- T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995) 1226-1229.
- T. Vicsek, A. Zafeiris, Collective motion, Phys. Rep., 517 (2012) 71-140.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.