On a conjecture of Dekking : The sum of digits of even numbers
Iurie Boreico[1]; Daniel El-Baz[2]; Thomas Stoll[3]
- [1] Department of Mathematics Stanford University 450 Serra Mall Stanford, California 94305, USA
- [2] School of Mathematics University of Bristol University Walk Bristol, BS8 1TW, United Kingdom
- [3] 1. Université de Lorraine Institut Elie Cartan de Lorraine, UMR 7502 Vandoeuvre-lès-Nancy, F-54506, France 2. CNRS Institut Elie Cartan de Lorraine, UMR 7502 Vandoeuvre-lès-Nancy, F-54506, France
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 1, page 17-24
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBoreico, Iurie, El-Baz, Daniel, and Stoll, Thomas. "On a conjecture of Dekking : The sum of digits of even numbers." Journal de Théorie des Nombres de Bordeaux 26.1 (2014): 17-24. <http://eudml.org/doc/275820>.
@article{Boreico2014,
abstract = {Let $q\ge 2$ and denote by $s_q$ the sum-of-digits function in base $q$. For $j=0,1,\dots ,q-1$ consider\[\# \lbrace 0 \le n < N : \;\;s\_q(2n) \equiv j \pmod \{q\} \rbrace .\]In 1983, F. M. Dekking conjectured that this quantity is greater than $N/q$ and, respectively, less than $N/q$ for infinitely many $N$, thereby claiming an absence of a drift (or Newman) phenomenon. In this paper we prove his conjecture.},
affiliation = {Department of Mathematics Stanford University 450 Serra Mall Stanford, California 94305, USA; School of Mathematics University of Bristol University Walk Bristol, BS8 1TW, United Kingdom; 1. Université de Lorraine Institut Elie Cartan de Lorraine, UMR 7502 Vandoeuvre-lès-Nancy, F-54506, France 2. CNRS Institut Elie Cartan de Lorraine, UMR 7502 Vandoeuvre-lès-Nancy, F-54506, France},
author = {Boreico, Iurie, El-Baz, Daniel, Stoll, Thomas},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Dekking's conjecture; sum of digits; Newman phenomenon},
language = {eng},
month = {4},
number = {1},
pages = {17-24},
publisher = {Société Arithmétique de Bordeaux},
title = {On a conjecture of Dekking : The sum of digits of even numbers},
url = {http://eudml.org/doc/275820},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Boreico, Iurie
AU - El-Baz, Daniel
AU - Stoll, Thomas
TI - On a conjecture of Dekking : The sum of digits of even numbers
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/4//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 1
SP - 17
EP - 24
AB - Let $q\ge 2$ and denote by $s_q$ the sum-of-digits function in base $q$. For $j=0,1,\dots ,q-1$ consider\[\# \lbrace 0 \le n < N : \;\;s_q(2n) \equiv j \pmod {q} \rbrace .\]In 1983, F. M. Dekking conjectured that this quantity is greater than $N/q$ and, respectively, less than $N/q$ for infinitely many $N$, thereby claiming an absence of a drift (or Newman) phenomenon. In this paper we prove his conjecture.
LA - eng
KW - Dekking's conjecture; sum of digits; Newman phenomenon
UR - http://eudml.org/doc/275820
ER -
References
top- J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, (2003). Zbl1086.11015MR1997038
- J. Coquet, A summation formula related to the binary digits. Invent. Math. 73 (1983), 107–115. Zbl0528.10006MR707350
- F. M. Dekking, On the distribution of digits in arithmetic sequences. Séminaire de Théorie des Nombres de Bordeaux, exposé no.32 (1983). Zbl0529.10047MR750333
- M. Drmota, T. Stoll, Newman’s phenomenon for generalized Thue-Morse sequences, Discrete Math. 308, (7) (2008), 1191–1208. Zbl1175.11012MR2382358
- A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265. Zbl0155.09003
- S. Goldstein, K. A. Kelly, E. R. Speer, The fractal structure of rarefied sums of the Thue-Morse sequence, J. Number Theory 42 (1992), 1–19. Zbl0788.11010
- D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969), 719–721. Zbl0194.35004MR244149
- V. Shevelev, Generalized Newman phenomena and digit conjectures on primes, Int. J. Math. Math. Sci., ID 908045 (2008). Zbl1247.11122MR2448274
- V. Shevelev, Exact exponent in the remainder term of Gelfond’s digit theorem in the binary case, Acta Arith. 136 (2009), 91–100. Zbl1232.11012MR2469946
- I. Shparlinski, On the size of the Gelfond exponent, J. Number Theory 130, (4) (2010), 1056–1060. Zbl1209.11008MR2600421
- G. Tenenbaum, Sur la non-dérivabilité de fonctions périodiques associées à certaines fonctions sommatoires, in: R.L. Graham & J. Nesetril (eds), The mathematics of Paul Erdős, Algorithms and Combinatorics 13 Springer Verlag, (1997), 117–128. Zbl0869.11019MR1425180
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.