On a conjecture of Dekking : The sum of digits of even numbers
Iurie Boreico[1]; Daniel El-Baz[2]; Thomas Stoll[3]
- [1] Department of Mathematics Stanford University 450 Serra Mall Stanford, California 94305, USA
- [2] School of Mathematics University of Bristol University Walk Bristol, BS8 1TW, United Kingdom
- [3] 1. Université de Lorraine Institut Elie Cartan de Lorraine, UMR 7502 Vandoeuvre-lès-Nancy, F-54506, France 2. CNRS Institut Elie Cartan de Lorraine, UMR 7502 Vandoeuvre-lès-Nancy, F-54506, France
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 1, page 17-24
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.-P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, (2003). Zbl1086.11015MR1997038
- J. Coquet, A summation formula related to the binary digits. Invent. Math. 73 (1983), 107–115. Zbl0528.10006MR707350
- F. M. Dekking, On the distribution of digits in arithmetic sequences. Séminaire de Théorie des Nombres de Bordeaux, exposé no.32 (1983). Zbl0529.10047MR750333
- M. Drmota, T. Stoll, Newman’s phenomenon for generalized Thue-Morse sequences, Discrete Math. 308, (7) (2008), 1191–1208. Zbl1175.11012MR2382358
- A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265. Zbl0155.09003
- S. Goldstein, K. A. Kelly, E. R. Speer, The fractal structure of rarefied sums of the Thue-Morse sequence, J. Number Theory 42 (1992), 1–19. Zbl0788.11010
- D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969), 719–721. Zbl0194.35004MR244149
- V. Shevelev, Generalized Newman phenomena and digit conjectures on primes, Int. J. Math. Math. Sci., ID 908045 (2008). Zbl1247.11122MR2448274
- V. Shevelev, Exact exponent in the remainder term of Gelfond’s digit theorem in the binary case, Acta Arith. 136 (2009), 91–100. Zbl1232.11012MR2469946
- I. Shparlinski, On the size of the Gelfond exponent, J. Number Theory 130, (4) (2010), 1056–1060. Zbl1209.11008MR2600421
- G. Tenenbaum, Sur la non-dérivabilité de fonctions périodiques associées à certaines fonctions sommatoires, in: R.L. Graham & J. Nesetril (eds), The mathematics of Paul Erdős, Algorithms and Combinatorics 13 Springer Verlag, (1997), 117–128. Zbl0869.11019MR1425180