Remarks on the behaviour of higher-order derivations on the gluing of differential spaces
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 1137-1154
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDrachal, Krzysztof. "Remarks on the behaviour of higher-order derivations on the gluing of differential spaces." Czechoslovak Mathematical Journal 65.4 (2015): 1137-1154. <http://eudml.org/doc/276054>.
@article{Drachal2015,
abstract = {This paper is about some geometric properties of the gluing of order $k$ in the category of Sikorski differential spaces, where $k$ is assumed to be an arbitrary natural number. Differential spaces are one of possible generalizations of the concept of an infinitely differentiable manifold. It is known that in many (very important) mathematical models, the manifold structure breaks down. Therefore it is important to introduce a more general concept. In this paper, in particular, the behaviour of $k^\{\rm th\}$ order tangent spaces, their dimensions, and other geometric properties, are described in the context of the process of gluing differential spaces. At the end some examples are given. The paper is self-consistent, i.e., a short review of the differential spaces theory is presented at the beginning.},
author = {Drachal, Krzysztof},
journal = {Czechoslovak Mathematical Journal},
keywords = {gluing of differential space; higher-order differential geometry; Sikorski differential space},
language = {eng},
number = {4},
pages = {1137-1154},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on the behaviour of higher-order derivations on the gluing of differential spaces},
url = {http://eudml.org/doc/276054},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Drachal, Krzysztof
TI - Remarks on the behaviour of higher-order derivations on the gluing of differential spaces
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1137
EP - 1154
AB - This paper is about some geometric properties of the gluing of order $k$ in the category of Sikorski differential spaces, where $k$ is assumed to be an arbitrary natural number. Differential spaces are one of possible generalizations of the concept of an infinitely differentiable manifold. It is known that in many (very important) mathematical models, the manifold structure breaks down. Therefore it is important to introduce a more general concept. In this paper, in particular, the behaviour of $k^{\rm th}$ order tangent spaces, their dimensions, and other geometric properties, are described in the context of the process of gluing differential spaces. At the end some examples are given. The paper is self-consistent, i.e., a short review of the differential spaces theory is presented at the beginning.
LA - eng
KW - gluing of differential space; higher-order differential geometry; Sikorski differential space
UR - http://eudml.org/doc/276054
ER -
References
top- Batubenge, A., Iglesias-Zemmour, P., Karshon, Y., Watts, J., Diffeological, Frölicher, and differential spaces. Preprint (2013). http://www.math.illinois.edu/ {jawatts/papers/reflexive.pdf}, .
- Bröcker, T., Jänich, K., Introduction to Differential Topology, Cambridge University Press, Cambridge (1982). (1982) Zbl0486.57001MR0674117
- Bucataru, I., Linear connections for systems of higher order differential equations, Houston J. Math. 31 (2005), 315-332. (2005) Zbl1078.58005MR2132839
- Chen, K. T., 10.1090/S0002-9904-1977-14320-6, Bull. Am. Math. Soc. 83 (1977), 831-879. (1977) Zbl0389.58001MR0454968DOI10.1090/S0002-9904-1977-14320-6
- Dodson, C. T. J., Galanis, G. N., 10.1016/j.geomphys.2004.02.005, J. Geom. Phys. 52 (2004), 127-136. (2004) Zbl1076.58002MR2088972DOI10.1016/j.geomphys.2004.02.005
- Drachal, K., Introduction to -spaces theory, Math. Aeterna 3 (2013), 753-770. (2013) Zbl1298.58008MR3157564
- Ebrahim, E., Mhehdi, N., The tangent bundle of higher order, Proc. of 2nd World Congress of Nonlinear Analysts, Nonlinear Anal., Theory Methods Appl. 30 (1997), 5003-5007. (1997) Zbl0955.58001MR1726003
- Epstein, M., Śniatycki, J., 10.1016/j.chaos.2006.11.036, Chaos Solitons Fractals 38 (2008), 334-338. (2008) Zbl1146.28300MR2415937DOI10.1016/j.chaos.2006.11.036
- G_infinity (),, Extending derivations to the superposition closure (version: 2014-10-23). http://mathoverflow.net/q/182778, .
- Gillman, L., Jerison, M., Rings of Continuous Functions, Graduate Texts in Mathematics 43 Springer, Berlin (1976). (1976) Zbl0327.46040MR0407579
- Gruszczak, J., Heller, M., Sasin, W., Quasiregular singularity of a cosmic string, Acta Cosmologica 18 (1992), 45-55. (1992)
- Heller, M., Multarzynski, P., Sasin, W., Zekanowski, Z., Local differential dimension of space-time, Acta Cosmologica 17 (1991), 19-26. (1991)
- Heller, M., Sasin, W., 10.1023/A:1026650424098, Gen. Relativ. Gravitation 31 (1999), 555-570. (1999) Zbl0932.83036MR1679416DOI10.1023/A:1026650424098
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer, Berlin (1993). (1993) MR1202431
- Kriegl, A., Michor, P. W., 10.1090/surv/053, Mathematical Surveys and Monographs 53 American Mathematical Society, Providence (1997). (1997) Zbl0889.58001MR1471480DOI10.1090/surv/053
- Krupka, D., Krupka, M., Jets and contact elements, Proceedings of the Seminar on Differential Geometry, Opava, Czech Republic, 2000 Mathematical Publications 2 Silesian University at Opava, Opava (2000), 39-85 D. Krupka. (2000) Zbl1020.58002MR1855570
- Kuratowski, C., Topologie. I, Panstwowe Wydawnictwo Naukowe 13, Warszawa French (1958). (1958) MR0090795
- Mallios, A., Rosinger, E. E., 10.1023/A:1010663502915, Acta Appl. Math. 67 (2001), 59-89. (2001) Zbl1005.46020MR1847884DOI10.1023/A:1010663502915
- Mallios, A., Rosinger, E. E., 10.1023/A:1006106718337, Acta Appl. Math. 55 (1999), 231-250. (1999) MR1686596DOI10.1023/A:1006106718337
- Mallios, A., Zafiris, E., The homological Kähler-de Rham differential mechanism I: Application in general theory of relativity, Adv. Math. Phys. 2011 (2011), Article ID 191083, 14 pages. (2011) Zbl1219.83037MR2801347
- Miron, R., The Geometry of Higher-Order Lagrange Spaces. Applications to Mechanics and Physics, Fundamental Theories of Physics 82 Kluwer Academic Publishers, Dordrecht (1997). (1997) Zbl0877.53001MR1437362
- Moreno, G., On the canonical connection for smooth envelopes, Demonstr. Math. (electronic only) 47 (2014), 459-464. (2014) Zbl1293.58002MR3217741
- Morimoto, A., 10.1017/S002776300001388X, Nagoya Math. J. 40 (1970), 99-120. (1970) Zbl0208.50201MR0279719DOI10.1017/S002776300001388X
- Mostow, M. A., 10.4310/jdg/1214434974, J. Differ. Geom. 14 (1979), 255-293. (1979) Zbl0427.58005MR0587553DOI10.4310/jdg/1214434974
- Multarzyński, P., Sasin, W., Żekanowski, Z., Vectors and vector fields of -th order on differential spaces, Demonstr. Math. (electronic only) 24 (1991), 557-572. (1991) Zbl0808.58008MR1156985
- Nestruev, J., Smooth Manifolds and Observables, Graduate Texts in Mathematics 220 Springer, New York (2003). (2003) Zbl1021.58001MR1930277
- Newns, W. F., Walker, A. G., 10.1112/jlms/s1-31.4.400, J. Lond. Math. Soc. 31 (1956), 400-407. (1956) Zbl0071.15303MR0084163DOI10.1112/jlms/s1-31.4.400
- Pohl, W. F., 10.1016/0040-9383(62)90103-9, Topology 1 (1962), 169-211. (1962) Zbl0112.36605MR0154293DOI10.1016/0040-9383(62)90103-9
- Sardanashvily, G., Lectures on Differential Geometry of Modules and Rings. Application to Quantum Theory, Lambert Academic Publishing, Saarbrucken (2012). (2012)
- Sasin, W., Gluing of differential spaces, Demonstr. Math. (electronic only) 25 (1992), 361-384. (1992) Zbl0759.58005MR1170697
- Sasin, W., Geometrical properties of gluing of differential spaces, Demonstr. Math. (electronic only) 24 (1991), 635-656. (1991) Zbl0759.58004MR1156988
- Sasin, W., On equivalence relations on a differential space, Commentat. Math. Univ. Carol. 29 (1988), 529-539. (1988) Zbl0679.58001MR0972834
- Sasin, W., Spallek, K., 10.1007/BF01444610, Math. Ann. 292 (1992), 85-102. (1992) Zbl0735.32020MR1141786DOI10.1007/BF01444610
- Sikorski, R., An Introduction to Differential Geometry, Biblioteka matematyczna 42 Panstwowe Wydawnictwo Naukowe, Warszawa Polish (1972). (1972) Zbl0255.53001MR0467544
- Sikorski, R., 10.4064/cm-24-1-45-79, Colloq. Math. 24 (1971), 45-79. (1971) Zbl0226.53004MR0482794DOI10.4064/cm-24-1-45-79
- Sikorski, R., 10.4064/cm-18-1-251-272, Colloq. Math. 18 (1967), 251-272. (1967) Zbl0162.25101MR0222799DOI10.4064/cm-18-1-251-272
- Śniatycki, J., 10.1007/s11784-011-0063-y, J. Fixed Point Theory Appl. 10 (2011), 339-358. (2011) Zbl1252.53094MR2861565DOI10.1007/s11784-011-0063-y
- Śniatycki, J., 10.1007/s11784-008-0081-6, J. Fixed Point Theory Appl. 3 (2008), 307-315. (2008) Zbl1149.53323MR2434450DOI10.1007/s11784-008-0081-6
- Śniatycki, J., 10.5802/aif.2006, Ann. Inst. Fourier 53 (2003), 2257-2296. (2003) Zbl1048.53060MR2044173DOI10.5802/aif.2006
- Souriau, J.-M., Groupes différentiels, Differential Geometrical Methods in Mathematical Physics. Proc. Conf. Aix-en-Provence and Salamanca, 1979 Lecture Notes in Math. 836 Springer, Berlin French (1980), 91-128. (1980) Zbl0501.58010MR0607688
- Spallek, K., Differenzierbare Räume, Math. Ann. 180 German (1969), 269-296. (1969) Zbl0169.52901MR0261035
- Vassiliou, E., 10.1007/BF02169286, J. Math. Sci., New York 95 (1999), 2669-2680. (1999) Zbl0936.53022MR1712993DOI10.1007/BF02169286
- Warner, F. W., 10.1007/978-1-4757-1799-0, Graduate Texts in Mathematics 94 Springer, New York (1983). (1983) Zbl0516.58001MR0722297DOI10.1007/978-1-4757-1799-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.