Some stationary source and joint source-channel coding theorems with a fidelity criterion

Štefan Šujan

Kybernetika (1986)

  • Volume: 22, Issue: 6, page 461-470
  • ISSN: 0023-5954

How to cite

top

Šujan, Štefan. "Some stationary source and joint source-channel coding theorems with a fidelity criterion." Kybernetika 22.6 (1986): 461-470. <http://eudml.org/doc/27607>.

@article{Šujan1986,
author = {Šujan, Štefan},
journal = {Kybernetika},
language = {eng},
number = {6},
pages = {461-470},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Some stationary source and joint source-channel coding theorems with a fidelity criterion},
url = {http://eudml.org/doc/27607},
volume = {22},
year = {1986},
}

TY - JOUR
AU - Šujan, Štefan
TI - Some stationary source and joint source-channel coding theorems with a fidelity criterion
JO - Kybernetika
PY - 1986
PB - Institute of Information Theory and Automation AS CR
VL - 22
IS - 6
SP - 461
EP - 470
LA - eng
UR - http://eudml.org/doc/27607
ER -

References

top
  1. T. Berger, Rate Distortion Theory, Prentice Hall, Englewood Cliffs 1971. (1971) MR0408988
  2. R. M. Gray, Sliding-block source coding, IEEE Trans. Inform. Theory 21 (1975), 357-368. (1975) Zbl0308.94015MR0376230
  3. R. M. Gray, D. S. Ornstein, Sliding-block joint source/noisy-channel coding theorems, IEEE Trans. Inform. Theory 22 (1976), 682-690. (1976) Zbl0348.94019MR0530088
  4. R. M. Gray D. S. Ornstein, and R. L. Dobrushin, Block synchronization, sliding-block coding, invulnerable sources, and zero-error codes for discrete noisy channels, Ann. Probab. 5 (1980), 638-674. (1980) MR0577308
  5. R. M. Gray D. L. Neuhoff, and D. S. Ornstein, Non-block source coding with a fidelity criterion, Ann. Probab. 3 (1975), 478-491. (1975) MR0376239
  6. Š. Šujan, Sinai's theorem and entropy compression, Problems Control Inform. Theory 12 (1983), 419 - 428. (1983) Zbl0559.94007MR0733060
  7. Š. Šujan, Ergodic theory, entropy, and coding problems of information theory, Kybernetika 19 (1983), supplement, 58 pp. (1983) MR0902063
  8. J. C. Kieffer, A simple development of the Thouvenot relative isomorphism theory, Ann. Probab. 12 (1984), 204-211. (1984) Zbl0551.28023MR0723739
  9. R. M. Gray D. L. Neuhoff, and P. C. Shields, A generalization of Ornstein’s d ¯ -distance with applications to information theory, Ann. Probab. 3 (1975), 315-328. (1975) MR0368127
  10. D. S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale Univ. Press, New Haven, Conn. 1974. (1974) Zbl0296.28016MR0447525
  11. P. C. Shields, The Theory of Bernoulli Shifts, Univ. of Chicago Press, Chicago 1973. (1973) Zbl0308.28011MR0442198
  12. J. C. Kieffer, A method for proving multiterminal source coding theorems, IEEE Trans. Inform. Theory 27 (1981), 565-570. (1981) Zbl0473.94008MR0650689
  13. J. C. Kieffer, On the transmission of Bernoulli sources over stationary channels, Ann. Probab. 5 (1980), 942- 961. (1980) Zbl0452.94012MR0586778
  14. R. M. Gray D. L. Neuhoff, and J. K. Omura, Process definitions of distortion-rate functions and source coding theorem, IEEE Trans. Inform. Theory 21 (1975), 524-532. (1975) MR0449878
  15. D. L. Neuhoff R. M. Gray, and L. D. Davisson, Fixed rate universal block source coding with a fidelity criterion, IEEE Trans. Inform. Theory 21 (1975), 511 - 523. (1975) MR0411825
  16. R. M. Gray, D. S. Ornstein, Block coding for discrete stationary d ¯ -continuous noisy channels, IEEE Trans. Inform. Theory 25 (1979), 292-306. (1979) MR0528007
  17. R. G. Gallager, Information Theory and Reliable Communication, J. Wiley, New York-London-Sydney-Toronto 1968. (1968) Zbl0198.52201
  18. J. C. Kieffer, Stationary coding over stationary channels, Z. Wahrsch. verw. Gebiete 56 (1981), 113-126. (1981) Zbl0444.94007MR0612163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.