Fermat test with Gaussian base and Gaussian pseudoprimes
José María Grau; Antonio M. Oller-Marcén; Manuel Rodríguez; Daniel Sadornil
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 969-982
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGrau, José María, et al. "Fermat test with Gaussian base and Gaussian pseudoprimes." Czechoslovak Mathematical Journal 65.4 (2015): 969-982. <http://eudml.org/doc/276094>.
@article{Grau2015,
abstract = {The structure of the group $(\mathbb \{Z\}/n\mathbb \{Z\})^\star $ and Fermat’s little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Euler’s totient function and Carmichael’s lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer’s totient problem, Giuga’s conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider the underlying group $\mathcal \{G\}_n:=\lbrace a+b\{\rm i\}\in \mathbb \{Z\}[\{\rm i\}]/n\mathbb \{Z\}[\{\rm i\}]\colon a^2+b^2\equiv 1\hspace\{4.44443pt\}(\@mod \; n)\rbrace $. In particular, we characterize Gaussian Carmichael numbers via a Korselt’s criterion and present their relation with Gaussian cyclic numbers. Finally, we present the relation between Gaussian Carmichael number and 1-Williams numbers for numbers $n \equiv 3\hspace\{4.44443pt\}(\@mod \; 4)$. There are also no known composite numbers less than $10^\{18\}$ in this family that are both pseudoprime to base $1+2\{\rm i\}$ and 2-pseudoprime.},
author = {Grau, José María, Oller-Marcén, Antonio M., Rodríguez, Manuel, Sadornil, Daniel},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gaussian integer; Fermat test; pseudoprime},
language = {eng},
number = {4},
pages = {969-982},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fermat test with Gaussian base and Gaussian pseudoprimes},
url = {http://eudml.org/doc/276094},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Grau, José María
AU - Oller-Marcén, Antonio M.
AU - Rodríguez, Manuel
AU - Sadornil, Daniel
TI - Fermat test with Gaussian base and Gaussian pseudoprimes
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 969
EP - 982
AB - The structure of the group $(\mathbb {Z}/n\mathbb {Z})^\star $ and Fermat’s little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Euler’s totient function and Carmichael’s lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer’s totient problem, Giuga’s conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider the underlying group $\mathcal {G}_n:=\lbrace a+b{\rm i}\in \mathbb {Z}[{\rm i}]/n\mathbb {Z}[{\rm i}]\colon a^2+b^2\equiv 1\hspace{4.44443pt}(\@mod \; n)\rbrace $. In particular, we characterize Gaussian Carmichael numbers via a Korselt’s criterion and present their relation with Gaussian cyclic numbers. Finally, we present the relation between Gaussian Carmichael number and 1-Williams numbers for numbers $n \equiv 3\hspace{4.44443pt}(\@mod \; 4)$. There are also no known composite numbers less than $10^{18}$ in this family that are both pseudoprime to base $1+2{\rm i}$ and 2-pseudoprime.
LA - eng
KW - Gaussian integer; Fermat test; pseudoprime
UR - http://eudml.org/doc/276094
ER -
References
top- Alford, W. R., Granville, A., Pomerance, C., There are infinitely many Carmichael numbers, Ann. Math. (2) 139 (1994), 703-722. (1994) Zbl0816.11005MR1283874
- Borwein, D., Maitland, C., Skerritt, M., Computation of an improved lower bound to Giuga's primality conjecture, Integers (electronic only) 13 (2013), Paper A67, 14 pages. (2013) Zbl1284.11002MR3118385
- Burcsi, P., Czirbusz, S., Farkas, G., Computational investigation of Lehmer's totient problem, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 35 (2011), 43-49. (2011) Zbl1240.11005MR2894552
- Carmichael, R. D., 10.1090/S0002-9904-1910-01892-9, Amer. Math. Soc. Bull. (2) 16 (1910), 232-238. (1910) MR1558896DOI10.1090/S0002-9904-1910-01892-9
- Cross, J. T., 10.2307/2322785, Am. Math. Mon. 90 (1983), 518-528. (1983) Zbl0525.12001MR0717096DOI10.2307/2322785
- Echi, O., Williams numbers, C. R. Math. Acad. Sci., Soc. R. Can. 29 (2007), 41-47. (2007) Zbl1204.11185MR2367725
- Galway, W., Tables of pseudoprimes and related data. http://www.cecm.sfu.ca/Pseudoprimes/, .
- Giuga, G., Su una presumibile proprietà caratteristica dei numeri primi, Ist. Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. (3) 14 (1951), 511-528 Italian. (1951) Zbl0045.01801MR0046381
- Goldman, J. R., Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms, Proc. Am. Math. Soc. 87 (1983), 586-590. (1983) Zbl0511.12014MR0687622
- Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Oxford University Press Oxford (2008). (2008) Zbl1159.11001MR2445243
- Lehmer, D. H., 10.1090/S0002-9904-1932-05521-5, Bull. Am. Math. Soc. 38 (1932), 745-751. (1932) Zbl0005.34302MR1562500DOI10.1090/S0002-9904-1932-05521-5
- Lemmermeyer, F., Conics---a poor man's elliptic curves, Preprint at http://www.fen.bilkent.edu.tr/ {franz/publ/conics.pdf} arXiv:math/0311306v1[math.NT].
- Pinch, R. G. E., Absolute quadratic pseudoprimes, Proc. of Conf. on Algorithmic Number Theory. TUCS General Publications 46 A.-M. Ernvall-Hytönen at al. (2007), 113-128. http://tucs.fi/publications/view/?id=pErJuKaLe07a&table=proceeding. (2007)
- C. Pomerance, J. L. Selfridge, S. S. Wagstaff, Jr., The pseudoprimes to , Math. Comput. 35 (1980), 1003-1026. (1980) Zbl0444.10007MR0572872
- Schettler, J., Lehmer's totient problem and Carmichael numbers in a PID. http://math.ucsb.edu/ {jcs/Schettler.pdf}, .
- Silverman, J. H., 10.4064/aa155-3-1, Acta Arith. 155 (2012), 233-246. (2012) Zbl1304.11047MR2983450DOI10.4064/aa155-3-1
- Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, http://www.oeis.org. Zbl1159.11327
- Steele, G. A., 10.1016/j.jnt.2007.08.009, J. Number Theory 128 (2008), 910-917. (2008) Zbl1176.11049MR2400049DOI10.1016/j.jnt.2007.08.009
- Szele, T., 10.1007/BF02568132, Comment. Math. Helv. 20 (1947), 265-267 German. (1947) Zbl0034.30502MR0021934DOI10.1007/BF02568132
- Tarry, G., Franel, I., Korselt, A. R., Vacca, G., Problème chinois, L’intermédiaire des mathématiciens 6 (1899), 142-144 French www.oeis.org/wiki/File:Problème_chinois.pdf. (1899)
- Williams, H. C., 10.4153/CMB-1977-025-9, Can. Math. Bull. 20 (1977), 133-143. (1977) Zbl0368.10011MR0447099DOI10.4153/CMB-1977-025-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.