On the Nörlund means of Vilenkin-Fourier series
István Blahota; Lars-Erik Persson; Giorgi Tephnadze
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 983-1002
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Blahota, I., 10.1023/A:1026769207159, Acta Math. Hung. 89 (2000), 15-27. (2000) Zbl0973.42020MR1912235DOI10.1023/A:1026769207159
- Blahota, I., Relation between Dirichlet kernels with respect to Vilenkin-like systems, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 22 (1994), 109-114. (1994) Zbl0882.42017
- Blahota, I., Gát, G., 10.1007/s10496-008-0001-z, Anal. Theory Appl. 24 (2008), 1-17. (2008) Zbl1164.42022MR2422455DOI10.1007/s10496-008-0001-z
- Blahota, I., Tephnadze, G., 10.1007/s10476-014-0301-9, Anal. Math. 40 (2014), 161-174. (2014) Zbl1313.42083MR3240221DOI10.1007/s10476-014-0301-9
- Blahota, I., Tephnadze, G., 10.5486/PMD.2014.5896, Publ. Math. Debrecen 85 (2014), 181-196. (2014) MR3231514DOI10.5486/PMD.2014.5896
- Fujii, N., A maximal inequality for -functions on a generalized Walsh-Paley group, Proc. Am. Math. Soc. 77 (1979), 111-116. (1979) MR0539641
- G{á}t, G., 10.1016/S0021-9045(03)00075-3, J. Approx. Theory 124 (2003), 25-43. (2003) Zbl1032.43003MR2010779DOI10.1016/S0021-9045(03)00075-3
- G{á}t, G., 10.1007/BF01872107, Acta Math. Hung. 61 (1993), 131-149. (1993) Zbl0805.42019MR1200968DOI10.1007/BF01872107
- Gát, G., Goginava, U., Almost everywhere convergence of -means of quadratical partial sums of double Vilenkin-Fourier series, Georgian Math. J. 13 (2006), 447-462. (2006) Zbl1107.42006MR2271060
- Gát, G., Goginava, U., 10.1007/s10114-005-0648-8, Acta Math. Sin., Engl. Ser. 22 (2006), 497-506. (2006) MR2214371DOI10.1007/s10114-005-0648-8
- Gát, G., Nagy, K., On the logarithmic summability of Fourier series, Georgian Math. J. 18 (2011), 237-248. (2011) Zbl1221.42049MR2805978
- Goginava, U., 10.1007/s10476-010-0101-9, Anal. Math. 36 (2010), 1-31. (2010) MR2606574DOI10.1007/s10476-010-0101-9
- Goginava, U., Maximal operators of Fejér-Walsh means, Acta Sci. Math. 74 (2008), 615-624. (2008) Zbl1199.42127MR2487936
- Goginava, U., The maximal operator of Marcinkiewicz-Fejér means of the -dimensional Walsh-Fourier series, East J. Approx. 12 (2006), 295-302. (2006) MR2252557
- Goginava, U., The maximal operator of the means of the Walsh-Fourier series, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 26 (2006), 127-135. (2006) Zbl1121.42020MR2388683
- Goginava, U., Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 21 (2005), 169-175. (2005) Zbl1093.42018MR2162613
- Goginava, U., 10.1006/jath.2001.3632, J. Approx. Theory 115 (2002), 9-20. (2002) Zbl0998.42018MR1888974DOI10.1006/jath.2001.3632
- Moore, C. N., Summable Series and Convergence Factors, Dover Publications, New York (1966). (1966) Zbl0142.30704MR0201863
- Móricz, F., Siddiqi, A. H., 10.1016/0021-9045(92)90067-X, J. Approx. Theory 70 (1992), 375-389. (1992) Zbl0757.42009MR1178380DOI10.1016/0021-9045(92)90067-X
- Nagy, K., Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions, Math. Inequal. Appl. 15 (2012), 301-322. (2012) Zbl1243.42038MR2962234
- Nagy, K., Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series, Georgian Math. J. 18 (2011), 147-162. (2011) Zbl1210.42043MR2787349
- Nagy, K., Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series, East J. Approx. 16 (2010), 297-311. (2010) Zbl1216.42006MR2789336
- Nagy, K., 10.1007/s10476-010-0404-x, Anal. Math. 36 (2010), 299-319. (2010) Zbl1240.42133MR2738323DOI10.1007/s10476-010-0404-x
- Pál, J., Simon, P., 10.1007/BF01896477, Acta Math. Acad. Sci. Hung. 29 (1977), 155-164. (1977) Zbl0345.42011MR0450884DOI10.1007/BF01896477
- Schipp, F., Rearrangements of series in the Walsh system, Math. Notes 18 (1976), 701-706 translation fromMat. Zametki 18 (1975), 193-201. (1975) MR0390633
- Simon, P., 10.1007/s006050070004, Monatsh. Math. 131 (2000), 321-334. (2000) MR1813992DOI10.1007/s006050070004
- Simon, P., 10.1006/jmaa.2000.6732, J. Math. Anal. Appl. 245 (2000), 52-68. (2000) Zbl0987.42022MR1756576DOI10.1006/jmaa.2000.6732
- Simon, P., Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 27 (1984), 87-101. (1984) Zbl0586.43001MR0823096
- Simon, P., Weisz, F., 10.1016/j.jat.2007.05.004, J. Approx. Theory 151 (2008), 1-19. (2008) Zbl1143.42032MR2403893DOI10.1016/j.jat.2007.05.004
- Tephnadze, G., On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series, Stud. Sci. Math. Hung. 51 (2014), 105-120. (2014) Zbl1299.42098MR3188506
- Tephnadze, G., 10.3103/S1068362314010038, J. Contemp. Math. Anal. 49 23-32 Russian (2014). (2014) MR3237573DOI10.3103/S1068362314010038
- Tephnadze, G., 10.1007/s10474-013-0361-5, Acta Math. Hung. 142 (2014), 244-259. (2014) Zbl1313.42086MR3158862DOI10.1007/s10474-013-0361-5
- Tephnadze, G., On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl. 16 (2013), 301-312. (2013) Zbl1263.42008MR3060398
- Tephnadze, G., On the maximal operators of Vilenkin-Fejér means, Turk. J. Math. 37 (2013), 308-318. (2013) Zbl1278.42037MR3040854
- Tephnadze, G., A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 28 (2012), 167-176. (2012) Zbl1289.42084MR3048092
- Tephnadze, G., Fejér means of Vilenkin-Fourier series, Stud. Sci. Math. Hung. 49 (2012), 79-90. (2012) Zbl1265.42099MR3059789
- Tephnadze, G., The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 245-256. (2011) Zbl1265.42100MR2880697
- Vilenkin, N. J., On a class of complete orthonormal systems, Am. Math. Soc. Transl. Ser. (2), 28 (1963), 1-35 translation fromIzv. Akad. Nauk SSSR, Ser. Mat. 11 (1947), 363-400. (1947) Zbl0036.35601MR0154042
- Weisz, F., 10.1023/B:AMHU.0000028241.87331.c5, Acta Math. Hung. 103 (2004), 139-176. (2004) Zbl1060.42021MR2047878DOI10.1023/B:AMHU.0000028241.87331.c5
- Weisz, F., 10.1023/A:1014364010470, Anal. Math. 27 (2001), 141-155. (2001) Zbl0992.42016MR1834858DOI10.1023/A:1014364010470
- Weisz, F., 10.1007/BF02205221, Anal. Math. 22 (1996), 229-242. (1996) Zbl0866.42020MR1627638DOI10.1007/BF02205221
- Weisz, F., 10.1007/BFb0073448, Lecture Notes in Mathematics 1568 Springer, Berlin (1994). (1994) Zbl0796.60049MR1320508DOI10.1007/BFb0073448