On the Nörlund means of Vilenkin-Fourier series
István Blahota; Lars-Erik Persson; Giorgi Tephnadze
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 983-1002
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBlahota, István, Persson, Lars-Erik, and Tephnadze, Giorgi. "On the Nörlund means of Vilenkin-Fourier series." Czechoslovak Mathematical Journal 65.4 (2015): 983-1002. <http://eudml.org/doc/276158>.
@article{Blahota2015,
abstract = {We prove and discuss some new $( H_\{p\},L_\{p\})$-type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients $\lbrace q_\{k\}\colon k\ge 0\rbrace $. These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. In the special cases of general Nörlund means $t_\{n\}$ with non-increasing coefficients analogous results can be obtained for Fejér and Cesàro means by choosing the generating sequence $\lbrace q_\{k\}\colon k\ge 0\rbrace $ in an appropriate way.},
author = {Blahota, István, Persson, Lars-Erik, Tephnadze, Giorgi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Vilenkin system; Vilenkin group; Nörlund means; martingale Hardy space; maximal operator; Vilenkin-Fourier series; strong convergence; inequality},
language = {eng},
number = {4},
pages = {983-1002},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Nörlund means of Vilenkin-Fourier series},
url = {http://eudml.org/doc/276158},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Blahota, István
AU - Persson, Lars-Erik
AU - Tephnadze, Giorgi
TI - On the Nörlund means of Vilenkin-Fourier series
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 983
EP - 1002
AB - We prove and discuss some new $( H_{p},L_{p})$-type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients $\lbrace q_{k}\colon k\ge 0\rbrace $. These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. In the special cases of general Nörlund means $t_{n}$ with non-increasing coefficients analogous results can be obtained for Fejér and Cesàro means by choosing the generating sequence $\lbrace q_{k}\colon k\ge 0\rbrace $ in an appropriate way.
LA - eng
KW - Vilenkin system; Vilenkin group; Nörlund means; martingale Hardy space; maximal operator; Vilenkin-Fourier series; strong convergence; inequality
UR - http://eudml.org/doc/276158
ER -
References
top- Blahota, I., 10.1023/A:1026769207159, Acta Math. Hung. 89 (2000), 15-27. (2000) Zbl0973.42020MR1912235DOI10.1023/A:1026769207159
- Blahota, I., Relation between Dirichlet kernels with respect to Vilenkin-like systems, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 22 (1994), 109-114. (1994) Zbl0882.42017
- Blahota, I., Gát, G., 10.1007/s10496-008-0001-z, Anal. Theory Appl. 24 (2008), 1-17. (2008) Zbl1164.42022MR2422455DOI10.1007/s10496-008-0001-z
- Blahota, I., Tephnadze, G., 10.1007/s10476-014-0301-9, Anal. Math. 40 (2014), 161-174. (2014) Zbl1313.42083MR3240221DOI10.1007/s10476-014-0301-9
- Blahota, I., Tephnadze, G., 10.5486/PMD.2014.5896, Publ. Math. Debrecen 85 (2014), 181-196. (2014) MR3231514DOI10.5486/PMD.2014.5896
- Fujii, N., A maximal inequality for -functions on a generalized Walsh-Paley group, Proc. Am. Math. Soc. 77 (1979), 111-116. (1979) MR0539641
- G{á}t, G., 10.1016/S0021-9045(03)00075-3, J. Approx. Theory 124 (2003), 25-43. (2003) Zbl1032.43003MR2010779DOI10.1016/S0021-9045(03)00075-3
- G{á}t, G., 10.1007/BF01872107, Acta Math. Hung. 61 (1993), 131-149. (1993) Zbl0805.42019MR1200968DOI10.1007/BF01872107
- Gát, G., Goginava, U., Almost everywhere convergence of -means of quadratical partial sums of double Vilenkin-Fourier series, Georgian Math. J. 13 (2006), 447-462. (2006) Zbl1107.42006MR2271060
- Gát, G., Goginava, U., 10.1007/s10114-005-0648-8, Acta Math. Sin., Engl. Ser. 22 (2006), 497-506. (2006) MR2214371DOI10.1007/s10114-005-0648-8
- Gát, G., Nagy, K., On the logarithmic summability of Fourier series, Georgian Math. J. 18 (2011), 237-248. (2011) Zbl1221.42049MR2805978
- Goginava, U., 10.1007/s10476-010-0101-9, Anal. Math. 36 (2010), 1-31. (2010) MR2606574DOI10.1007/s10476-010-0101-9
- Goginava, U., Maximal operators of Fejér-Walsh means, Acta Sci. Math. 74 (2008), 615-624. (2008) Zbl1199.42127MR2487936
- Goginava, U., The maximal operator of Marcinkiewicz-Fejér means of the -dimensional Walsh-Fourier series, East J. Approx. 12 (2006), 295-302. (2006) MR2252557
- Goginava, U., The maximal operator of the means of the Walsh-Fourier series, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 26 (2006), 127-135. (2006) Zbl1121.42020MR2388683
- Goginava, U., Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 21 (2005), 169-175. (2005) Zbl1093.42018MR2162613
- Goginava, U., 10.1006/jath.2001.3632, J. Approx. Theory 115 (2002), 9-20. (2002) Zbl0998.42018MR1888974DOI10.1006/jath.2001.3632
- Moore, C. N., Summable Series and Convergence Factors, Dover Publications, New York (1966). (1966) Zbl0142.30704MR0201863
- Móricz, F., Siddiqi, A. H., 10.1016/0021-9045(92)90067-X, J. Approx. Theory 70 (1992), 375-389. (1992) Zbl0757.42009MR1178380DOI10.1016/0021-9045(92)90067-X
- Nagy, K., Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions, Math. Inequal. Appl. 15 (2012), 301-322. (2012) Zbl1243.42038MR2962234
- Nagy, K., Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series, Georgian Math. J. 18 (2011), 147-162. (2011) Zbl1210.42043MR2787349
- Nagy, K., Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series, East J. Approx. 16 (2010), 297-311. (2010) Zbl1216.42006MR2789336
- Nagy, K., 10.1007/s10476-010-0404-x, Anal. Math. 36 (2010), 299-319. (2010) Zbl1240.42133MR2738323DOI10.1007/s10476-010-0404-x
- Pál, J., Simon, P., 10.1007/BF01896477, Acta Math. Acad. Sci. Hung. 29 (1977), 155-164. (1977) Zbl0345.42011MR0450884DOI10.1007/BF01896477
- Schipp, F., Rearrangements of series in the Walsh system, Math. Notes 18 (1976), 701-706 translation fromMat. Zametki 18 (1975), 193-201. (1975) MR0390633
- Simon, P., 10.1007/s006050070004, Monatsh. Math. 131 (2000), 321-334. (2000) MR1813992DOI10.1007/s006050070004
- Simon, P., 10.1006/jmaa.2000.6732, J. Math. Anal. Appl. 245 (2000), 52-68. (2000) Zbl0987.42022MR1756576DOI10.1006/jmaa.2000.6732
- Simon, P., Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 27 (1984), 87-101. (1984) Zbl0586.43001MR0823096
- Simon, P., Weisz, F., 10.1016/j.jat.2007.05.004, J. Approx. Theory 151 (2008), 1-19. (2008) Zbl1143.42032MR2403893DOI10.1016/j.jat.2007.05.004
- Tephnadze, G., On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series, Stud. Sci. Math. Hung. 51 (2014), 105-120. (2014) Zbl1299.42098MR3188506
- Tephnadze, G., 10.3103/S1068362314010038, J. Contemp. Math. Anal. 49 23-32 Russian (2014). (2014) MR3237573DOI10.3103/S1068362314010038
- Tephnadze, G., 10.1007/s10474-013-0361-5, Acta Math. Hung. 142 (2014), 244-259. (2014) Zbl1313.42086MR3158862DOI10.1007/s10474-013-0361-5
- Tephnadze, G., On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl. 16 (2013), 301-312. (2013) Zbl1263.42008MR3060398
- Tephnadze, G., On the maximal operators of Vilenkin-Fejér means, Turk. J. Math. 37 (2013), 308-318. (2013) Zbl1278.42037MR3040854
- Tephnadze, G., A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 28 (2012), 167-176. (2012) Zbl1289.42084MR3048092
- Tephnadze, G., Fejér means of Vilenkin-Fourier series, Stud. Sci. Math. Hung. 49 (2012), 79-90. (2012) Zbl1265.42099MR3059789
- Tephnadze, G., The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 245-256. (2011) Zbl1265.42100MR2880697
- Vilenkin, N. J., On a class of complete orthonormal systems, Am. Math. Soc. Transl. Ser. (2), 28 (1963), 1-35 translation fromIzv. Akad. Nauk SSSR, Ser. Mat. 11 (1947), 363-400. (1947) Zbl0036.35601MR0154042
- Weisz, F., 10.1023/B:AMHU.0000028241.87331.c5, Acta Math. Hung. 103 (2004), 139-176. (2004) Zbl1060.42021MR2047878DOI10.1023/B:AMHU.0000028241.87331.c5
- Weisz, F., 10.1023/A:1014364010470, Anal. Math. 27 (2001), 141-155. (2001) Zbl0992.42016MR1834858DOI10.1023/A:1014364010470
- Weisz, F., 10.1007/BF02205221, Anal. Math. 22 (1996), 229-242. (1996) Zbl0866.42020MR1627638DOI10.1007/BF02205221
- Weisz, F., 10.1007/BFb0073448, Lecture Notes in Mathematics 1568 Springer, Berlin (1994). (1994) Zbl0796.60049MR1320508DOI10.1007/BFb0073448
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.