Mathematical structures behind supersymmetric dualities

Ilmar Gahramanov

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 5, page 273-286
  • ISSN: 0044-8753

Abstract

top
The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.

How to cite

top

Gahramanov, Ilmar. "Mathematical structures behind supersymmetric dualities." Archivum Mathematicum 051.5 (2015): 273-286. <http://eudml.org/doc/276206>.

@article{Gahramanov2015,
abstract = {The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.},
author = {Gahramanov, Ilmar},
journal = {Archivum Mathematicum},
keywords = {elliptic hypergeometric function; hypergeometric series on root systems; basic hypergeometric integrals; hyperbolic hypergeometric integrals; superconformal index; supersymmetric duality; Seiberg duality; mirror symmetry; elliptic hypergeometric function; hypergeometric series on root systems; basic hypergeometric integrals; hyperbolic hypergeometric integrals; superconformal index; supersymmetric duality; Seiberg duality; mirror symmetry},
language = {eng},
number = {5},
pages = {273-286},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Mathematical structures behind supersymmetric dualities},
url = {http://eudml.org/doc/276206},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Gahramanov, Ilmar
TI - Mathematical structures behind supersymmetric dualities
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 5
SP - 273
EP - 286
AB - The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.
LA - eng
KW - elliptic hypergeometric function; hypergeometric series on root systems; basic hypergeometric integrals; hyperbolic hypergeometric integrals; superconformal index; supersymmetric duality; Seiberg duality; mirror symmetry; elliptic hypergeometric function; hypergeometric series on root systems; basic hypergeometric integrals; hyperbolic hypergeometric integrals; superconformal index; supersymmetric duality; Seiberg duality; mirror symmetry
UR - http://eudml.org/doc/276206
ER -

References

top
  1. Aharony, O., Hanany, A., Intriligator, K.A., Seiberg, N., Strassler, M., 10.1016/S0550-3213(97)00323-4, Nuclear Phys. B 499 (1997), 67–99, http://arxiv.org/abs/hep-th/9703110, arXiv:hep-th/9703110 [hep-th]. (1997) Zbl0934.81063MR1468698DOI10.1016/S0550-3213(97)00323-4
  2. Al-Salam, W.A., Ismail, M.E.H., 10.2140/pjm.1988.135.209, Pacific J. Math. 135 2) (1988), 209–221, http://dx.doi.org/10.2140/pjm.1988.135.209. (1988) Zbl0658.33002MR0968609DOI10.2140/pjm.1988.135.209
  3. Amariti, A., Klare, C., A journey to 3d: exact relations for adjoint SQCD from dimensional reduction, http://arxiv.org/abs/1106.2484, arXiv:1409.8623 [hep-th]. 
  4. Askey, R., 10.2307/2321202, Amer. Math. Monthly 87 (5) (1980), 346–359, http://dx.doi.org/10.2307/2321202. (1980) Zbl0437.33001MR0567718DOI10.2307/2321202
  5. Askey, R., Wilson, J.A., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (319) (1985), iv+55 pp. (1985) Zbl0572.33012MR0783216
  6. Benini, F., Cremonesi, S., 10.1007/s00220-014-2112-z, Comm. Math. Phys. 334 (3) (2015), 62 pages + 16 of appendices, http://arxiv.org/abs/1206.2356, arXiv:1206.2356 [hep-th]. (2015) Zbl1308.81131MR3312441DOI10.1007/s00220-014-2112-z
  7. Bhattacharya, J., Minwalla, S., 10.1088/1126-6708/2009/01/014, JHEP 0901 (014) (2009), 13 pp., http://dx.doi.org/10.1088/1126-6708/2009/01/014. (2009) MR2480370DOI10.1088/1126-6708/2009/01/014
  8. de Boer, J., Hori, K., Oz, Y., Yin, Z., Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nuclear Phys. B 502 (1997), 107–124, http://arxiv.org/abs/hep-th/9702154, arXiv:hep-th/9702154 [hep-th]. (1997) MR1477860
  9. Dimofte, T., Gaiotto, D., An E7 Surprise, JHEP 1210 (129) (2012), 37pp., arXiv:1209.1404 [hep-th]. (2012) 
  10. Dolan, F., Osborn, H., Applications of the superconformal index for protected operators and q -hypergeometric identities to N = 1 dual theories, Nuclear Phys. B 818 (2009), 137–178, http://arxiv.org/abs/0801.4947, arXiv:0801.4947 [hep-th]. (2009) MR2518083
  11. Dolan, F., Spiridonov, V., Vartanov, G., 10.1016/j.physletb.2011.09.007, Phys. Lett. B 704 (2011), 234–241, http://arxiv.org/abs/1104.1787, arXiv:1104.1787 [hep-th]. (2011) MR2843616DOI10.1016/j.physletb.2011.09.007
  12. Doroud, N., Gomis, J., Le Floch, B., Lee, S., Exact Results in D=2 Supersymmetric Gauge Theories, JHEP 1305 (093) (2013), http://arxiv.org/abs/1206.2606, arXiv:1206.2606 [hep-th]. (2013) Zbl1342.81573MR3080568
  13. Felder, G., Varchenko, A., 10.1006/aima.2000.1951, Adv. Math 156 (1) (2000), 44–76, http://dx.doi.org/http://dx.doi.org/10.1006/aima.2000.1951, http://arxiv.org/abs/math/9907061, arXiv:math/9907061. (2000) MR1800253DOI10.1006/aima.2000.1951
  14. Frenkel, I.B., Turaev, V.G., 10.1007/978-1-4612-4122-5_9, The Arnold-Gelfand Mathematical Seminars, 1997, http://dx.doi.org/10.1007/978-1-4612-4122-5_9, pp. 171–204. (1997) Zbl0974.17016MR1429892DOI10.1007/978-1-4612-4122-5_9
  15. Gadde, A., Yan, W., Reducing the 4d index to the S 3 partition function, JHEP 1212 (003) (2012), 12 pp., http://arxiv.org/abs/1104.2592, arXiv:1104.2592 [hep-th]. (2012) MR3045303
  16. Gahramanov, I., Rosengren, H., [unknown] 
  17. Gahramanov, I., Rosengren, H., Integral pentagon relations for 3d superconformal indices, http://arxiv.org/abs/1412.2926, arXiv:1412.2926 [hep-th]. 
  18. Gahramanov, I., Rosengren, H., 10.1007/JHEP11(2013)128, JHEP 1311 (2013), http://dx.doi.org/10.1007/JHEP11(2013)128, http://arxiv.org/abs/1309.2195, arXiv:1309.2195 [hep-th]. (2013) DOI10.1007/JHEP11(2013)128
  19. Gahramanov, I., Spiridonov, V.P., 10.1007/JHEP08(2015)040, JHEP 1508 040 (2015), http://dx.doi.org/10.1007/JHEP08(2015)040. (2015) MR3402125DOI10.1007/JHEP08(2015)040
  20. Gahramanov, I., Vartanov, G., 10.1088/1751-8113/46/28/285403, J. Phys. A 46 (2013), 285403, http://dx.doi.org/10.1088/1751-8113/46/28/285403, http://arxiv.org/abs/1303.1443, arXiv:1303.1443 [hep-th]. (2013) MR3083462DOI10.1088/1751-8113/46/28/285403
  21. Gahramanov, I.B., Vartanov, G.S., 10.1142/9789814449243_0076, XVIIth Intern. Cong. Math. Phys. (2013), 695–703, http://dx.doi.org/10.1142/9789814449243_0076, http://arxiv.org/abs/1310.8507, arXiv:1310.8507 [hep-th]. (2013) MR3204521DOI10.1142/9789814449243_0076
  22. Gasper, G., Rahman, M., Basic hypergeometric series, second ed., Cambridge University Press, 2004. (2004) Zbl1129.33005MR2128719
  23. Imamura, Y., Relation between the 4d superconformal index and the S 3 partition function, JHEP 1109 (133) (2011), 20 pp., http://arxiv.org/abs/1104.4482, arXiv:1104.4482 [hep-th]. (2011) MR2889831
  24. Imamura, Y., Yokoyama, S., Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 1104 (2011), 22 pp., http://arxiv.org/abs/1101.0557, arXiv:1101.0557 [hep-th]. (2011) Zbl1250.81107MR2833291
  25. Intriligator, K.A., New RG fixed points and duality in supersymmetric SP(N(c)) and SO(N(c)) gauge theories, Nuclear Phys. B 448 (1995), 187–198, http://arxiv.org/abs/hep-th/9505051, arXiv:hep-th/9505051 [hep-th]. (1995) Zbl1009.81573MR1352405
  26. Intriligator, K.A., Seiberg, N., 10.1016/0370-2693(96)01088-X, Phys. Lett. B 387 (1996), 513–519, http://arxiv.org/abs/hep-th/9607207, arXiv:hep-th/9607207 [hep-th]. (1996) MR1413696DOI10.1016/0370-2693(96)01088-X
  27. Kapustin, A., Willet, B., Generalized superconformal index for three dimensional field theories, http://arxiv.org/abs/1106.2484, arXiv:1106.2484 [hep-th]. 
  28. Kim, S., 10.1016/j.nuclphysb.2009.06.025, Nuclear Phys. B 821 (2009), 241–284, http://dx.doi.org/10.1016/j.nuclphysb.2012.07.015, 10.1016/j.nuclphysb.2009.06.025. (2009) MR2562335DOI10.1016/j.nuclphysb.2009.06.025
  29. Kinney, J., Maldacena, J.M., Minwalla, S., Raju, S., 10.1007/s00220-007-0258-7, Comm. Math. Phys. 275 (2007), 209–254, http://dx.doi.org/10.1007/s00220-007-0258-7, http://arxiv.org/abs/hep-th/0510251, arXiv:hep-th/0510251 [hep-th]. (2007) Zbl1122.81070MR2335774DOI10.1007/s00220-007-0258-7
  30. Krattenthaler, C., Spiridonov, V., Vartanov, G., 10.1007/JHEP06(2011)008, JHEP 1106 (008) (2011), http://dx.doi.org/10.1007/JHEP06(2011)008, http://arxiv.org/abs/1103.4075, arXiv:1103.4075 [hep-th]. (2011) Zbl1298.81186MR2870861DOI10.1007/JHEP06(2011)008
  31. Narukawa, A., 10.1016/j.aim.2003.11.009, Adv. Math. 189 (2) (2004), 247–267, http://arxiv.org/abs/math/0306164, arXiv:math/0306164. (2004) Zbl1077.33024MR2101221DOI10.1016/j.aim.2003.11.009
  32. Nassrallah, B., Rahman, M., 10.1137/0516014, SIAM J. Math. Anal. 16 (1) (1985), 186–197, http://dx.doi.org/10.1137/0516014. (1985) Zbl0564.33009MR0772878DOI10.1137/0516014
  33. Nishizawa, M., 10.1088/0305-4470/34/36/320, J. Phys. A 34 (36) (2001), 7411–7421. (2001) Zbl0993.33016MR1862776DOI10.1088/0305-4470/34/36/320
  34. Pestun, V., 10.1007/s00220-012-1485-0, Comm. Math. Phys. 313 (71) (2012), 63 pp., http://arxiv.org/abs/0712.2824, arXiv:0712.2824 [hep-th]. (2012) Zbl1257.81056MR2928219DOI10.1007/s00220-012-1485-0
  35. Rahman, M., 10.4153/CJM-1986-030-6, Canad. J. Math. 38 3) (1986), 605–618, http://dx.doi.org/10.4153/CJM-1986-030-6. (1986) MR0845667DOI10.4153/CJM-1986-030-6
  36. Rains, E.M., 10.4007/annals.2010.171.169, Ann. Math. 171 (1) (2010), 169–243, http://dx.doi.org/10.4007/annals.2010.171.169, http://arxiv.org/abs/math/0309252, arXiv:math/0309252. (2010) Zbl1209.33014MR2630038DOI10.4007/annals.2010.171.169
  37. Romelsberger, C., Calculating the superconformal index and Seiberg duality, http://arxiv.org/abs/0707.3702, arXiv:0707.3702 [hep-th]. 
  38. Romelsberger, C., 10.1016/j.nuclphysb.2006.03.037, Nuclear Phys. B 747 (2006), 329–353, http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037, http://arxiv.org/abs/hep-th/0510060, arXiv:hep-th/0510060 [hep-th]. (2006) MR2241553DOI10.1016/j.nuclphysb.2006.03.037
  39. Rosengren, H., 10.1016/S0001-8708(03)00071-9, Adv. Math. 181 (2) (2004), 417–447, http://dx.doi.org/10.1016/S0001-8708(03)00071-9, http://arxiv.org/abs/math/0207046, arXiv:math/0207046. (2004) Zbl1066.33017MR2026866DOI10.1016/S0001-8708(03)00071-9
  40. Rosengren, H., 10.1093/imrn/rnq184, Int. Math. Res. Not. 2011 (2011), 2861–2920, http://dx.doi.org/10.1093/imrn/rnq184, http://arxiv.org/abs/1003.3730, arXiv:1003.3730. (2011) Zbl1243.17010MR2817682DOI10.1093/imrn/rnq184
  41. Ruijsenaars, S.N.M., 10.1063/1.531809, J. Math. Phys. 38 (2) (1997), 1069–1146, http://dx.doi.org/10.1063/1.531809. (1997) Zbl0877.39002MR1434226DOI10.1063/1.531809
  42. Seiberg, N., 10.1016/0550-3213(94)00023-8, Nuclear Phys. B 435 (1995), 129–146, http://dx.doi.org/10.1016/0550-3213(94)00023-8. (1995) Zbl1020.81912MR1314365DOI10.1016/0550-3213(94)00023-8
  43. Spiridonov, V., Modified elliptic gamma functions and 6d superconformal indices, http://arxiv.org/abs/1211.2703, arXiv:1211.2703 [hep-th]. Zbl1303.81195MR3177989
  44. Spiridonov, V., Vartanov, G., Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices, http://arxiv.org/abs/1107.5788, arXiv:1107.5788 [hep-th]. Zbl1285.81064MR3148094
  45. Spiridonov, V., Vartanov, G., 10.1016/j.nuclphysb.2009.08.022, Nuclear Phys. B 824 (2010), 192–216, http://dx.doi.org/10.1016/j.nuclphysb.2009.08.022, http://arxiv.org/abs/0811.1909, arXiv:0811.1909 [hep-th]. (2010) MR2556156DOI10.1016/j.nuclphysb.2009.08.022
  46. Spiridonov, V., Vartanov, G., 10.1103/PhysRevLett.105.061603, Phys. Rev. Lett. 105 (2010), 061603, http://dx.doi.org/10.1103/PhysRevLett.105.061603, http://arxiv.org/abs/1003.6109, arXiv:1003.6109 [hep-th]. (2010) MR2673041DOI10.1103/PhysRevLett.105.061603
  47. Spiridonov, V., Vartanov, G., 10.1007/s00220-011-1218-9, Comm. Math. Phys. 304 (2011), 797–874, http://dx.doi.org/10.1007/s00220-011-1218-9. (2011) Zbl1225.81137MR2794548DOI10.1007/s00220-011-1218-9
  48. Spiridonov, V., Vartanov, G., 10.1007/s00220-011-1218-9, JHEP 1206 (016) (2012), 18 pp., http://dx.doi.org/10.1007/s00220-011-1218-9. (2012) MR3006892DOI10.1007/s00220-011-1218-9
  49. Spiridonov, V.P., 10.1070/RM2001v056n01ABEH000374, Russian Math. Surveys 56 (1) (2001), 185–186, http://dx.doi.org/10.1070/RM2001v056n01ABEH000374. (2001) Zbl0997.33009MR1846786DOI10.1070/RM2001v056n01ABEH000374
  50. Spiridonov, V.P., 10.1090/S1061-0022-04-00839-8, Algebra i Analiz 15 (6) (2003), 161–215, http://dx.doi.org/10.1090/S1061-0022-04-00839-8, http://arxiv.org/abs/arXiv:math/0303205, arXiv:math/0303205. (2003) MR2044635DOI10.1090/S1061-0022-04-00839-8
  51. Spiridonov, V.P., 10.1070/RM2008v063n03ABEH004533, Russian Math. Surveys 63 (3) (2008), 405–472, http://dx.doi.org/10.1070/RM2008v063n03ABEH004533. (2008) Zbl1173.33017MR2479997DOI10.1070/RM2008v063n03ABEH004533
  52. Stokman, J.V., 10.1016/j.aim.2003.12.003, Adv. Math. 190 (1) (2005), 119–160, http://arxiv.org/abs/math/0303178, arXiv:math/0303178. (2005) Zbl1072.33012MR2104907DOI10.1016/j.aim.2003.12.003
  53. Tizzano, L., Winding, J., Multiple sine, multiple elliptic gamma functions and rational cones, http://arxiv.org/abs/1502.05996, arXiv:1502.05996 [math.CA]. 
  54. van de Bult, F.J., Hyperbolic hypergeometric functions, Ph.D. thesis, University of Amsterdam, 2007. (2007) 
  55. van de Bult, F.J., 10.1007/s11139-010-9273-y, Ramanujan J. 25 (1) (2011), 1–20, http://dx.doi.org/10.1007/s11139-010-9273-y, http://arxiv.org/abs/0909.4793, arXiv:0909.4793. (2011) MR2787288DOI10.1007/s11139-010-9273-y
  56. van de Bult, F.J., Rains, E.M., Limits of multivariate elliptic beta integrals and related bilinear forms, http://arxiv.org/abs/1110.1460, arXiv:1110.1460. 
  57. van de Bult, F.J., Rains, E.M., Limits of multivariate elliptic hypergeometric biorthogonal functions, http://arxiv.org/abs/1110.1458, arXiv:1110.1458. 
  58. van de Bult, F.J., Rains, E.M., 10.1016/j.jat.2014.06.009, J. Approx. Theory 193 (0) (2015), 128–163, http://dx.doi.org/http://dx.doi.org/10.1016/j.jat.2014.06.009, http://arxiv.org/abs/1110.1456, arXiv:1110.1456. (2015) MR3324567DOI10.1016/j.jat.2014.06.009
  59. Witten, E., 10.1016/0550-3213(82)90071-2, Nuclear Phys. B 202 (1982), 253–316, http://dx.doi.org/10.1016/0550-3213(82)90071-2. (1982) MR0668987DOI10.1016/0550-3213(82)90071-2
  60. Yamazaki, M., 10.1007/s11232-013-0012-6, Theoret. and Math. Phys. 174 (1) (2013), 154–166, http://dx.doi.org/10.1007/s11232-013-0012-6. (2013) Zbl1280.81103MR3172959DOI10.1007/s11232-013-0012-6
  61. Zwiebel, B.I., 10.1007/JHEP01(2012)116, JHEP 1201 (116) (2012), 31 pp., http://dx.doi.org/10.1007/JHEP01(2012)116, http://arxiv.org/abs/1111.1773, arXiv:1111.1773 [hep-th]. (2012) Zbl1306.81135DOI10.1007/JHEP01(2012)116

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.