Remarks on effect-tribes

Sylvia Pulmannová; Elena Vinceková

Kybernetika (2015)

  • Volume: 51, Issue: 5, page 739-746
  • ISSN: 0023-5954

Abstract

top
We show that an effect tribe of fuzzy sets 𝒯 [ 0 , 1 ] X with the property that every f 𝒯 is 0 ( 𝒯 ) -measurable, where 0 ( 𝒯 ) is the family of subsets of X whose characteristic functions are central elements in 𝒯 , is a tribe. Moreover, a monotone σ -complete effect algebra with RDP with a Loomis-Sikorski representation ( X , 𝒯 , h ) , where the tribe 𝒯 has the property that every f 𝒯 is 0 ( 𝒯 ) -measurable, is a σ -MV-algebra.

How to cite

top

Pulmannová, Sylvia, and Vinceková, Elena. "Remarks on effect-tribes." Kybernetika 51.5 (2015): 739-746. <http://eudml.org/doc/276219>.

@article{Pulmannová2015,
abstract = {We show that an effect tribe of fuzzy sets $\{\mathcal \{T\}\}\subseteq [0,1]^X$ with the property that every $f\in \{\mathcal \{T\}\}$ is $\{\mathcal \{B\}\}_0(\{\mathcal \{T\}\})$-measurable, where $\{\mathcal \{B\}\}_0(\{\mathcal \{T\}\})$ is the family of subsets of $X$ whose characteristic functions are central elements in $\{\mathcal \{T\}\}$, is a tribe. Moreover, a monotone $\sigma $-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, \{\mathcal \{T\}\},h)$, where the tribe $\{\mathcal \{T\}\}$ has the property that every $f\in \{\mathcal \{T\}\}$ is $\{\mathcal \{B\}\}_0(\{\mathcal \{T\}\})$-measurable, is a $\sigma $-MV-algebra.},
author = {Pulmannová, Sylvia, Vinceková, Elena},
journal = {Kybernetika},
keywords = {effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra},
language = {eng},
number = {5},
pages = {739-746},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Remarks on effect-tribes},
url = {http://eudml.org/doc/276219},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Pulmannová, Sylvia
AU - Vinceková, Elena
TI - Remarks on effect-tribes
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 739
EP - 746
AB - We show that an effect tribe of fuzzy sets ${\mathcal {T}}\subseteq [0,1]^X$ with the property that every $f\in {\mathcal {T}}$ is ${\mathcal {B}}_0({\mathcal {T}})$-measurable, where ${\mathcal {B}}_0({\mathcal {T}})$ is the family of subsets of $X$ whose characteristic functions are central elements in ${\mathcal {T}}$, is a tribe. Moreover, a monotone $\sigma $-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, {\mathcal {T}},h)$, where the tribe ${\mathcal {T}}$ has the property that every $f\in {\mathcal {T}}$ is ${\mathcal {B}}_0({\mathcal {T}})$-measurable, is a $\sigma $-MV-algebra.
LA - eng
KW - effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra
UR - http://eudml.org/doc/276219
ER -

References

top
  1. Buhagiar, D., Chetcuti, E., Dvurečenskij, A., 10.1016/j.fss.2005.09.013, Fuzzy Sets Syst. 157 (2006), 683-690. Zbl1097.06010MR2211326DOI10.1016/j.fss.2005.09.013
  2. Butnariu, D., Klement, E. P., 10.1007/978-94-017-3602-2, Kluwer Academic Publisher, Dordrecht 1993. Zbl0804.90145MR2867321DOI10.1007/978-94-017-3602-2
  3. Dvurečenskij, A., 10.1016/s0034-4877(11)80011-x, Rep. Math. Phys. 67 (2011), 63-85. Zbl1238.81008MR2830095DOI10.1016/s0034-4877(11)80011-x
  4. Dvurečenskij, A., 10.1007/s10701-012-9689-x, Found. Phys. 43 (2013), 210-224. Zbl1270.81012MR3019888DOI10.1007/s10701-012-9689-x
  5. Dvurečenskij, A., 10.1017/s1446788700003177, J. Austral. Math. Soc. 74 (2003), 121-143. Zbl1033.03036MR1948263DOI10.1017/s1446788700003177
  6. Dvurečenskij, A., 10.1017/s1446788700001993, J. Austral. Math. Soc. Ser. A 68 (2000), 261-277. Zbl0958.06006MR1738040DOI10.1017/s1446788700001993
  7. Dvurečenskij, A., Pulmannová, S., 10.1007/978-94-017-2422-7, Kluwer Academic/Ister Science, Dordrecht/Bratislava 2000. Zbl0987.81005MR1861369DOI10.1007/978-94-017-2422-7
  8. Foulis, D. J., Bennett, M. K., 10.1007/bf02283036, Found. Phys. 24 (1994), 1325-1346. Zbl1213.06004MR1304942DOI10.1007/bf02283036
  9. Greechie, R. J., Foulis, D. J., Pulmannová, S., 10.1007/bf01108592, Order 12 (1995), 91-106. Zbl0846.03031MR1336539DOI10.1007/bf01108592
  10. Goodearl, K. R., 10.1007/bf01108592, Math. Surveys and Monographs, Vol. 20, Am. Math. Soc., Providence 1986. Zbl0589.06008MR0845783DOI10.1007/bf01108592
  11. Jenčová, A., Pulmannová, S., Vinceková, E., Observables on σ -MV algebras and σ -lattice effect algebras., Kybernetika 47 (2011), 541-559. Zbl1237.81008MR2884860
  12. Mundici, D., 10.1016/0022-1236(86)90015-7, Funct. Anal. 65 (1986), 15-63. MR0819173DOI10.1016/0022-1236(86)90015-7
  13. Mundici, D., 10.1006/aama.1998.0631, Adv. Appl. Math. 22 (1999), 227-248. MR1659410DOI10.1006/aama.1998.0631
  14. Pulmannová, S., A spectral theorem for sigma MV-algebras., Kybernetika 41 (2005), 361-374. Zbl1249.03119MR2181424
  15. Ravindran, K., On a Structure Theory of Effect Algebras., PhD. Thesis, Kansas State Univ. Manhattan 1996. MR2694228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.