Remarks on effect-tribes

Sylvia Pulmannová; Elena Vinceková

Kybernetika (2015)

  • Volume: 51, Issue: 5, page 739-746
  • ISSN: 0023-5954

Abstract

top
We show that an effect tribe of fuzzy sets with the property that every is -measurable, where is the family of subsets of whose characteristic functions are central elements in , is a tribe. Moreover, a monotone -complete effect algebra with RDP with a Loomis-Sikorski representation , where the tribe has the property that every is -measurable, is a -MV-algebra.

How to cite

top

Pulmannová, Sylvia, and Vinceková, Elena. "Remarks on effect-tribes." Kybernetika 51.5 (2015): 739-746. <http://eudml.org/doc/276219>.

@article{Pulmannová2015,
abstract = {We show that an effect tribe of fuzzy sets $\{\mathcal \{T\}\}\subseteq [0,1]^X$ with the property that every $f\in \{\mathcal \{T\}\}$ is $\{\mathcal \{B\}\}_0(\{\mathcal \{T\}\})$-measurable, where $\{\mathcal \{B\}\}_0(\{\mathcal \{T\}\})$ is the family of subsets of $X$ whose characteristic functions are central elements in $\{\mathcal \{T\}\}$, is a tribe. Moreover, a monotone $\sigma $-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, \{\mathcal \{T\}\},h)$, where the tribe $\{\mathcal \{T\}\}$ has the property that every $f\in \{\mathcal \{T\}\}$ is $\{\mathcal \{B\}\}_0(\{\mathcal \{T\}\})$-measurable, is a $\sigma $-MV-algebra.},
author = {Pulmannová, Sylvia, Vinceková, Elena},
journal = {Kybernetika},
keywords = {effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra},
language = {eng},
number = {5},
pages = {739-746},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Remarks on effect-tribes},
url = {http://eudml.org/doc/276219},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Pulmannová, Sylvia
AU - Vinceková, Elena
TI - Remarks on effect-tribes
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 739
EP - 746
AB - We show that an effect tribe of fuzzy sets ${\mathcal {T}}\subseteq [0,1]^X$ with the property that every $f\in {\mathcal {T}}$ is ${\mathcal {B}}_0({\mathcal {T}})$-measurable, where ${\mathcal {B}}_0({\mathcal {T}})$ is the family of subsets of $X$ whose characteristic functions are central elements in ${\mathcal {T}}$, is a tribe. Moreover, a monotone $\sigma $-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, {\mathcal {T}},h)$, where the tribe ${\mathcal {T}}$ has the property that every $f\in {\mathcal {T}}$ is ${\mathcal {B}}_0({\mathcal {T}})$-measurable, is a $\sigma $-MV-algebra.
LA - eng
KW - effect-tribe; tribe; monotone $\sigma $-complete effect algebra; Riesz decomposition property; MV-algebra
UR - http://eudml.org/doc/276219
ER -

References

top
  1. Buhagiar, D., Chetcuti, E., Dvurečenskij, A., 10.1016/j.fss.2005.09.013, Fuzzy Sets Syst. 157 (2006), 683-690. Zbl1097.06010MR2211326DOI10.1016/j.fss.2005.09.013
  2. Butnariu, D., Klement, E. P., 10.1007/978-94-017-3602-2, Kluwer Academic Publisher, Dordrecht 1993. Zbl0804.90145MR2867321DOI10.1007/978-94-017-3602-2
  3. Dvurečenskij, A., 10.1016/s0034-4877(11)80011-x, Rep. Math. Phys. 67 (2011), 63-85. Zbl1238.81008MR2830095DOI10.1016/s0034-4877(11)80011-x
  4. Dvurečenskij, A., 10.1007/s10701-012-9689-x, Found. Phys. 43 (2013), 210-224. Zbl1270.81012MR3019888DOI10.1007/s10701-012-9689-x
  5. Dvurečenskij, A., 10.1017/s1446788700003177, J. Austral. Math. Soc. 74 (2003), 121-143. Zbl1033.03036MR1948263DOI10.1017/s1446788700003177
  6. Dvurečenskij, A., 10.1017/s1446788700001993, J. Austral. Math. Soc. Ser. A 68 (2000), 261-277. Zbl0958.06006MR1738040DOI10.1017/s1446788700001993
  7. Dvurečenskij, A., Pulmannová, S., 10.1007/978-94-017-2422-7, Kluwer Academic/Ister Science, Dordrecht/Bratislava 2000. Zbl0987.81005MR1861369DOI10.1007/978-94-017-2422-7
  8. Foulis, D. J., Bennett, M. K., 10.1007/bf02283036, Found. Phys. 24 (1994), 1325-1346. Zbl1213.06004MR1304942DOI10.1007/bf02283036
  9. Greechie, R. J., Foulis, D. J., Pulmannová, S., 10.1007/bf01108592, Order 12 (1995), 91-106. Zbl0846.03031MR1336539DOI10.1007/bf01108592
  10. Goodearl, K. R., 10.1007/bf01108592, Math. Surveys and Monographs, Vol. 20, Am. Math. Soc., Providence 1986. Zbl0589.06008MR0845783DOI10.1007/bf01108592
  11. Jenčová, A., Pulmannová, S., Vinceková, E., Observables on -MV algebras and -lattice effect algebras., Kybernetika 47 (2011), 541-559. Zbl1237.81008MR2884860
  12. Mundici, D., 10.1016/0022-1236(86)90015-7, Funct. Anal. 65 (1986), 15-63. MR0819173DOI10.1016/0022-1236(86)90015-7
  13. Mundici, D., 10.1006/aama.1998.0631, Adv. Appl. Math. 22 (1999), 227-248. MR1659410DOI10.1006/aama.1998.0631
  14. Pulmannová, S., A spectral theorem for sigma MV-algebras., Kybernetika 41 (2005), 361-374. Zbl1249.03119MR2181424
  15. Ravindran, K., On a Structure Theory of Effect Algebras., PhD. Thesis, Kansas State Univ. Manhattan 1996. MR2694228

NotesEmbed ?

top

You must be logged in to post comments.