Observables on σ -MV algebras and σ -lattice effect algebras

Anna Jenčová; Sylvia Pulmannová; Elena Vinceková

Kybernetika (2011)

  • Volume: 47, Issue: 4, page 541-559
  • ISSN: 0023-5954

Abstract

top
Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered σ -effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a σ -MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for σ -MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.

How to cite

top

Jenčová, Anna, Pulmannová, Sylvia, and Vinceková, Elena. "Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras." Kybernetika 47.4 (2011): 541-559. <http://eudml.org/doc/196559>.

@article{Jenčová2011,
abstract = {Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma $-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma $-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma $-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.},
author = {Jenčová, Anna, Pulmannová, Sylvia, Vinceková, Elena},
journal = {Kybernetika},
keywords = {lattice effect algebra; MV algebra; observable; state; Markov kernel; weak Markov kernel; smearing; generalized observable; state; observable; MV algebra; lattice effect algebra; Markov kernel; weak Markov kernel; smearing; generalized observable},
language = {eng},
number = {4},
pages = {541-559},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras},
url = {http://eudml.org/doc/196559},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Jenčová, Anna
AU - Pulmannová, Sylvia
AU - Vinceková, Elena
TI - Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 4
SP - 541
EP - 559
AB - Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma $-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma $-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma $-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.
LA - eng
KW - lattice effect algebra; MV algebra; observable; state; Markov kernel; weak Markov kernel; smearing; generalized observable; state; observable; MV algebra; lattice effect algebra; Markov kernel; weak Markov kernel; smearing; generalized observable
UR - http://eudml.org/doc/196559
ER -

References

top
  1. Busch, P., Lahti, P. J., Mittelstaedt, P., The Quantum Theory of Measurement, Lecture Notes in Phys., Springer-Verlag, Berlin 1991. (1991) MR1176754
  2. Butnariu, D., Klement, E., 10.1016/0022-247X(91)90181-X, J. Math. Anal. Appl. 162 (1991), 111–143. (1991) Zbl0751.60003MR1135265DOI10.1016/0022-247X(91)90181-X
  3. Barbieri, G., Weber, H., Measures on clans and on MV-algebras, In: Handbook of Measure Theory, vol. II. (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 911–945. (2002) Zbl1019.28009MR1954632
  4. Cignoli, R., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht 2000. (2000) MR1786097
  5. Chang, C., Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc. 89 (1959), 74–80. (1959) MR0094302
  6. Chovanec, F., Kôpka, F., 10.1007/BF00676241, Internat. J. Thoer. Phys. 34 (1995), 1297–1302. (1995) MR1353674DOI10.1007/BF00676241
  7. Dvurečenskij, A., 10.1017/S1446788700001993, J. Austral. Math. Soc. Ser A 68 (2000), 261–277. (2000) MR1738040DOI10.1017/S1446788700001993
  8. Dvurečenskij, A., Pulmannová, S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht 2000. (2000) MR1861369
  9. Foulis, D. J., Bennett, M. K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346. (1994) MR1304942
  10. Foulis, D. J., 10.1016/S0034-4877(04)80016-8, Rep. Math. Phys. 54 (2004), 229–250. (2004) MR2107868DOI10.1016/S0034-4877(04)80016-8
  11. Giuntini, R., Greuling, R., 10.1007/BF01889307, Found. Phys. 19 (1989), 931–945. (1989) MR1013913DOI10.1007/BF01889307
  12. Goodearl, K. R., Partially ordered abelian groups with interpolation, Mat. Surveys Monographs 20, AMS Providence, 1986. (1986) Zbl0589.06008MR0845783
  13. Holevo, A. S., An analogue of the theory of statistical decisions in noncommutative probability theory, Trans. Mosc. Math. Soc. 26 (1972), 133–147. (1972) MR0365809
  14. Jenča, G., Riečanová, Z., On sharp elements in lattice ordered effect algebras, Busefal 80 (1999), 24–29. (1999) 
  15. Jenčová, A., Pulmannová, S., Vinceková, E., 10.1007/s10773-007-9396-0, Internat. J. Theor. Phys. 47 (2008), 1, 125–148. (2008) Zbl1139.81006DOI10.1007/s10773-007-9396-0
  16. Jenčová, A., Pulmannová, S., 10.1016/S0034-4877(07)80038-3, Math. Phys. 59 (2007), 257–266. (2007) MR2340197DOI10.1016/S0034-4877(07)80038-3
  17. Jenčová, A., Pulmannová, S., 10.1007/s10701-009-9273-1, Found. Phys. 39 (2009), 613–124. (2009) Zbl1204.81068MR2548410DOI10.1007/s10701-009-9273-1
  18. Kôpka, F., Chovanec, F., D-posets, Math. Slovaca 44 (1994), 21–34. (1994) MR1290269
  19. Mundici, D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63. (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
  20. Mundici, D., 10.1006/aama.1998.0631, Advan. Appl. Math. 22 (1999), 227–248. (1999) Zbl0926.06004MR1659410DOI10.1006/aama.1998.0631
  21. Mundici, D., 10.1007/BF01053035, Studia Logica 55 (1995), 113–127. (1995) MR1348840DOI10.1007/BF01053035
  22. Pták, P., Pulmannová, S., Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht 1991. (1991) MR1176314
  23. Pulmannová, S., A spectral theorem for sigma-MV algebas, Kybernetika 41 (2005), 361–374. (2005) 
  24. Pulmannová, S., 10.1016/j.jmaa.2005.01.044, J. Math. Anal. Appl. 309 (2005), 322–335. (2005) Zbl1072.06014MR2154046DOI10.1016/j.jmaa.2005.01.044
  25. Pulmannová, S., Spectral resolutions for σ -complete lattice effect algebras, Math. Slovaca 56 (2006), 555–571. (2006) Zbl1141.81007MR2293587
  26. Pulmannová, S., Sharp and unsharp observables on σ -MV algebras—A comparison with the Hilbert space approach, Fuzzy Sets and Systems 159 (2008), 3065–3077. (2008) Zbl1174.06013MR2457564
  27. Riečan, B., Neubrunn, T., Integral, Measure and Ordering, Kluwer, Dordrecht – Ister Science, Bratislava 1997. (1997) MR1489521
  28. Riečanová, Z., 10.1023/A:1003619806024, Internat. J. Theor. Phys. 39 (2000), 231–237. (2000) MR1762594DOI10.1023/A:1003619806024
  29. Štepán, J., Probability Theory, (Teorie pravděpodobnosti. (In Czech.) Academia, Praha 1987. (1987) 
  30. Strasser, H., Mathematical Theory of Statistics, W. De Gruyter, Berlin – New York 1985. (1985) Zbl0594.62017MR0812467
  31. Varadarajan, V. S., Geometry of Quantum Theory, Springer-Verlag, Berlin 1985. (1985) Zbl0581.46061MR0805158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.