Observables on -MV algebras and -lattice effect algebras
Anna Jenčová; Sylvia Pulmannová; Elena Vinceková
Kybernetika (2011)
- Volume: 47, Issue: 4, page 541-559
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJenčová, Anna, Pulmannová, Sylvia, and Vinceková, Elena. "Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras." Kybernetika 47.4 (2011): 541-559. <http://eudml.org/doc/196559>.
@article{Jenčová2011,
abstract = {Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma $-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma $-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma $-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.},
author = {Jenčová, Anna, Pulmannová, Sylvia, Vinceková, Elena},
journal = {Kybernetika},
keywords = {lattice effect algebra; MV algebra; observable; state; Markov kernel; weak Markov kernel; smearing; generalized observable; state; observable; MV algebra; lattice effect algebra; Markov kernel; weak Markov kernel; smearing; generalized observable},
language = {eng},
number = {4},
pages = {541-559},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras},
url = {http://eudml.org/doc/196559},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Jenčová, Anna
AU - Pulmannová, Sylvia
AU - Vinceková, Elena
TI - Observables on $\sigma $-MV algebras and $\sigma $-lattice effect algebras
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 4
SP - 541
EP - 559
AB - Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered $\sigma $-effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a $\sigma $-MV algebra, and every observable is defined by a smearing of a sharp observable, which is obtained from generalized Loomis-Sikorski theorem for $\sigma $-MV algebras. Generalized observables with the range in the set of sharp real observables are studied and it is shown that they contain all smearings of observables.
LA - eng
KW - lattice effect algebra; MV algebra; observable; state; Markov kernel; weak Markov kernel; smearing; generalized observable; state; observable; MV algebra; lattice effect algebra; Markov kernel; weak Markov kernel; smearing; generalized observable
UR - http://eudml.org/doc/196559
ER -
References
top- Busch, P., Lahti, P. J., Mittelstaedt, P., The Quantum Theory of Measurement, Lecture Notes in Phys., Springer-Verlag, Berlin 1991. (1991) MR1176754
- Butnariu, D., Klement, E., 10.1016/0022-247X(91)90181-X, J. Math. Anal. Appl. 162 (1991), 111–143. (1991) Zbl0751.60003MR1135265DOI10.1016/0022-247X(91)90181-X
- Barbieri, G., Weber, H., Measures on clans and on MV-algebras, In: Handbook of Measure Theory, vol. II. (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 911–945. (2002) Zbl1019.28009MR1954632
- Cignoli, R., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht 2000. (2000) MR1786097
- Chang, C., Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc. 89 (1959), 74–80. (1959) MR0094302
- Chovanec, F., Kôpka, F., 10.1007/BF00676241, Internat. J. Thoer. Phys. 34 (1995), 1297–1302. (1995) MR1353674DOI10.1007/BF00676241
- Dvurečenskij, A., 10.1017/S1446788700001993, J. Austral. Math. Soc. Ser A 68 (2000), 261–277. (2000) MR1738040DOI10.1017/S1446788700001993
- Dvurečenskij, A., Pulmannová, S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht 2000. (2000) MR1861369
- Foulis, D. J., Bennett, M. K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346. (1994) MR1304942
- Foulis, D. J., 10.1016/S0034-4877(04)80016-8, Rep. Math. Phys. 54 (2004), 229–250. (2004) MR2107868DOI10.1016/S0034-4877(04)80016-8
- Giuntini, R., Greuling, R., 10.1007/BF01889307, Found. Phys. 19 (1989), 931–945. (1989) MR1013913DOI10.1007/BF01889307
- Goodearl, K. R., Partially ordered abelian groups with interpolation, Mat. Surveys Monographs 20, AMS Providence, 1986. (1986) Zbl0589.06008MR0845783
- Holevo, A. S., An analogue of the theory of statistical decisions in noncommutative probability theory, Trans. Mosc. Math. Soc. 26 (1972), 133–147. (1972) MR0365809
- Jenča, G., Riečanová, Z., On sharp elements in lattice ordered effect algebras, Busefal 80 (1999), 24–29. (1999)
- Jenčová, A., Pulmannová, S., Vinceková, E., 10.1007/s10773-007-9396-0, Internat. J. Theor. Phys. 47 (2008), 1, 125–148. (2008) Zbl1139.81006DOI10.1007/s10773-007-9396-0
- Jenčová, A., Pulmannová, S., 10.1016/S0034-4877(07)80038-3, Math. Phys. 59 (2007), 257–266. (2007) MR2340197DOI10.1016/S0034-4877(07)80038-3
- Jenčová, A., Pulmannová, S., 10.1007/s10701-009-9273-1, Found. Phys. 39 (2009), 613–124. (2009) Zbl1204.81068MR2548410DOI10.1007/s10701-009-9273-1
- Kôpka, F., Chovanec, F., D-posets, Math. Slovaca 44 (1994), 21–34. (1994) MR1290269
- Mundici, D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63. (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
- Mundici, D., 10.1006/aama.1998.0631, Advan. Appl. Math. 22 (1999), 227–248. (1999) Zbl0926.06004MR1659410DOI10.1006/aama.1998.0631
- Mundici, D., 10.1007/BF01053035, Studia Logica 55 (1995), 113–127. (1995) MR1348840DOI10.1007/BF01053035
- Pták, P., Pulmannová, S., Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht 1991. (1991) MR1176314
- Pulmannová, S., A spectral theorem for sigma-MV algebas, Kybernetika 41 (2005), 361–374. (2005)
- Pulmannová, S., 10.1016/j.jmaa.2005.01.044, J. Math. Anal. Appl. 309 (2005), 322–335. (2005) Zbl1072.06014MR2154046DOI10.1016/j.jmaa.2005.01.044
- Pulmannová, S., Spectral resolutions for -complete lattice effect algebras, Math. Slovaca 56 (2006), 555–571. (2006) Zbl1141.81007MR2293587
- Pulmannová, S., Sharp and unsharp observables on -MV algebras—A comparison with the Hilbert space approach, Fuzzy Sets and Systems 159 (2008), 3065–3077. (2008) Zbl1174.06013MR2457564
- Riečan, B., Neubrunn, T., Integral, Measure and Ordering, Kluwer, Dordrecht – Ister Science, Bratislava 1997. (1997) MR1489521
- Riečanová, Z., 10.1023/A:1003619806024, Internat. J. Theor. Phys. 39 (2000), 231–237. (2000) MR1762594DOI10.1023/A:1003619806024
- Štepán, J., Probability Theory, (Teorie pravděpodobnosti. (In Czech.) Academia, Praha 1987. (1987)
- Strasser, H., Mathematical Theory of Statistics, W. De Gruyter, Berlin – New York 1985. (1985) Zbl0594.62017MR0812467
- Varadarajan, V. S., Geometry of Quantum Theory, Springer-Verlag, Berlin 1985. (1985) Zbl0581.46061MR0805158
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.