A spectral theorem for σ MV-algebras

Sylvia Pulmannová

Kybernetika (2005)

  • Volume: 41, Issue: 3, page [361]-374
  • ISSN: 0023-5954

Abstract

top
MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for σ -MV-algebras, we prove that, with every element a in a σ -MV algebra M , a spectral measure (i. e. an observable) Λ a : ( [ 0 , 1 ] ) ( M ) can be associated, where ( M ) denotes the Boolean σ -algebra of idempotent elements in M . This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.

How to cite

top

Pulmannová, Sylvia. "A spectral theorem for $\sigma $ MV-algebras." Kybernetika 41.3 (2005): [361]-374. <http://eudml.org/doc/33759>.

@article{Pulmannová2005,
abstract = {MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: \{\mathcal \{B\}\}([0,1])\rightarrow \{\mathcal \{B\}\}(M)$ can be associated, where $\{\mathcal \{B\}\}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.},
author = {Pulmannová, Sylvia},
journal = {Kybernetika},
keywords = {MV-algebras; Loomis–Sikorski theorem; tribe; spectral decomposition; lattice effect algebras; compatibility; block; MV-algebra; Loomis-Sikorski theorem; tribe; spectral decomposition; lattice effect algebra; compatibility},
language = {eng},
number = {3},
pages = {[361]-374},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A spectral theorem for $\sigma $ MV-algebras},
url = {http://eudml.org/doc/33759},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Pulmannová, Sylvia
TI - A spectral theorem for $\sigma $ MV-algebras
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 3
SP - [361]
EP - 374
AB - MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: {\mathcal {B}}([0,1])\rightarrow {\mathcal {B}}(M)$ can be associated, where ${\mathcal {B}}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.
LA - eng
KW - MV-algebras; Loomis–Sikorski theorem; tribe; spectral decomposition; lattice effect algebras; compatibility; block; MV-algebra; Loomis-Sikorski theorem; tribe; spectral decomposition; lattice effect algebra; compatibility
UR - http://eudml.org/doc/33759
ER -

References

top
  1. Belluce L. P., 10.4153/CJM-1986-069-0, Canad. J. Math. 38 (1986), 1356–1379 (1986) Zbl0625.03009MR0873417DOI10.4153/CJM-1986-069-0
  2. Busch P., Lahti P. J., Mittelstaedt P., The Quantum Theory of Measurement, Springer–Verlag, Berlin 1991 Zbl0868.46051MR1176754
  3. Butnariu D., Klement E., 10.1016/0022-247X(91)90181-X, J. Math. Anal. Appl. 162 (1991), 111–143 (1991) Zbl0751.60003MR1135265DOI10.1016/0022-247X(91)90181-X
  4. Barbieri G., Weber H., Measures on clans and on MV-algebras, In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 22, pp. 911–945 Zbl1019.28009MR1954632
  5. Cattaneo G., Giuntini, R., Pulmannová S., 10.1023/A:1026462620062, Found. Phys. 30 (2000), 1765–1799 MR1810201DOI10.1023/A:1026462620062
  6. Chang C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490 (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  7. Chang C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80 (1959) Zbl0093.01104MR0122718
  8. Chovanec F., Kôpka F., 10.1007/BF00676241, Internat. J. Theor. Phys. 34 (1995), 1297–1302 (1995) Zbl0840.03046MR1353674DOI10.1007/BF00676241
  9. Cignoli R., D’Ottaviano I. M. L., Mundici D., Algebraic Foundation of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht 2000 MR1786097
  10. Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C., Entropy on effect algebras with the Riesz decomposition property I, II, Kybernetika 41 (2005), 143–160, 161–176 
  11. Chiara M. Dalla, Giuntini, R., Greechie R., Reasoning in Quantum Theory, Kluwer Academic Publishers, Dordrecht 2004 MR2069854
  12. Dvurečenskij A., 10.1017/S1446788700001993, J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 Zbl0958.06006MR1738040DOI10.1017/S1446788700001993
  13. Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR1861369
  14. Foulis D. J., Bennett M. K., 10.1007/BF02283036, Found. Phys. 24 (1994), 1325–1346 (1994) MR1304942DOI10.1007/BF02283036
  15. Halmos P. R., Measure Theory, Van Nostrand, Princeton, New Jersey 1962 Zbl0283.28001MR0033869
  16. Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21–34 (1994) MR1290269
  17. Mundici D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63 (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
  18. Mundici D., 10.1006/aama.1998.0631, Adv. Appl. Math. 22 (1999), 227–248 (1999) Zbl0926.06004MR1659410DOI10.1006/aama.1998.0631
  19. Pták P., Pulmannová S., Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht and VEDA, Bratislava 1991 MR1176314
  20. Pulmannová S., Spectral resolutions in Dedekind σ -complete -groups, J. Math. Anal. Appl. (to appear) Zbl1072.06014MR2154046
  21. Riečan B., Mundici D., Probability on MV-algebras, In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 21, pp. 869–909 Zbl1017.28002MR1954631
  22. Riečan B., Neubrunn T., Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1997 Zbl0916.28001MR1489521
  23. Varadarajan V. S., Geometry of Quantum Theory, Springer–Verlag, New York 1985 Zbl0581.46061MR0805158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.