A spectral theorem for MV-algebras
Kybernetika (2005)
- Volume: 41, Issue: 3, page [361]-374
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPulmannová, Sylvia. "A spectral theorem for $\sigma $ MV-algebras." Kybernetika 41.3 (2005): [361]-374. <http://eudml.org/doc/33759>.
@article{Pulmannová2005,
abstract = {MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: \{\mathcal \{B\}\}([0,1])\rightarrow \{\mathcal \{B\}\}(M)$ can be associated, where $\{\mathcal \{B\}\}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.},
author = {Pulmannová, Sylvia},
journal = {Kybernetika},
keywords = {MV-algebras; Loomis–Sikorski theorem; tribe; spectral decomposition; lattice effect algebras; compatibility; block; MV-algebra; Loomis-Sikorski theorem; tribe; spectral decomposition; lattice effect algebra; compatibility},
language = {eng},
number = {3},
pages = {[361]-374},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A spectral theorem for $\sigma $ MV-algebras},
url = {http://eudml.org/doc/33759},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Pulmannová, Sylvia
TI - A spectral theorem for $\sigma $ MV-algebras
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 3
SP - [361]
EP - 374
AB - MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: {\mathcal {B}}([0,1])\rightarrow {\mathcal {B}}(M)$ can be associated, where ${\mathcal {B}}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.
LA - eng
KW - MV-algebras; Loomis–Sikorski theorem; tribe; spectral decomposition; lattice effect algebras; compatibility; block; MV-algebra; Loomis-Sikorski theorem; tribe; spectral decomposition; lattice effect algebra; compatibility
UR - http://eudml.org/doc/33759
ER -
References
top- Belluce L. P., 10.4153/CJM-1986-069-0, Canad. J. Math. 38 (1986), 1356–1379 (1986) Zbl0625.03009MR0873417DOI10.4153/CJM-1986-069-0
- Busch P., Lahti P. J., Mittelstaedt P., The Quantum Theory of Measurement, Springer–Verlag, Berlin 1991 Zbl0868.46051MR1176754
- Butnariu D., Klement E., 10.1016/0022-247X(91)90181-X, J. Math. Anal. Appl. 162 (1991), 111–143 (1991) Zbl0751.60003MR1135265DOI10.1016/0022-247X(91)90181-X
- Barbieri G., Weber H., Measures on clans and on MV-algebras, In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 22, pp. 911–945 Zbl1019.28009MR1954632
- Cattaneo G., Giuntini, R., Pulmannová S., 10.1023/A:1026462620062, Found. Phys. 30 (2000), 1765–1799 MR1810201DOI10.1023/A:1026462620062
- Chang C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490 (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
- Chang C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80 (1959) Zbl0093.01104MR0122718
- Chovanec F., Kôpka F., 10.1007/BF00676241, Internat. J. Theor. Phys. 34 (1995), 1297–1302 (1995) Zbl0840.03046MR1353674DOI10.1007/BF00676241
- Cignoli R., D’Ottaviano I. M. L., Mundici D., Algebraic Foundation of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht 2000 MR1786097
- Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C., Entropy on effect algebras with the Riesz decomposition property I, II, Kybernetika 41 (2005), 143–160, 161–176
- Chiara M. Dalla, Giuntini, R., Greechie R., Reasoning in Quantum Theory, Kluwer Academic Publishers, Dordrecht 2004 MR2069854
- Dvurečenskij A., 10.1017/S1446788700001993, J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 Zbl0958.06006MR1738040DOI10.1017/S1446788700001993
- Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR1861369
- Foulis D. J., Bennett M. K., 10.1007/BF02283036, Found. Phys. 24 (1994), 1325–1346 (1994) MR1304942DOI10.1007/BF02283036
- Halmos P. R., Measure Theory, Van Nostrand, Princeton, New Jersey 1962 Zbl0283.28001MR0033869
- Kôpka F., Chovanec F., D-posets, Math. Slovaca 44 (1994), 21–34 (1994) MR1290269
- Mundici D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63 (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
- Mundici D., 10.1006/aama.1998.0631, Adv. Appl. Math. 22 (1999), 227–248 (1999) Zbl0926.06004MR1659410DOI10.1006/aama.1998.0631
- Pták P., Pulmannová S., Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht and VEDA, Bratislava 1991 MR1176314
- Pulmannová S., Spectral resolutions in Dedekind -complete -groups, J. Math. Anal. Appl. (to appear) Zbl1072.06014MR2154046
- Riečan B., Mundici D., Probability on MV-algebras, In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 21, pp. 869–909 Zbl1017.28002MR1954631
- Riečan B., Neubrunn T., Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1997 Zbl0916.28001MR1489521
- Varadarajan V. S., Geometry of Quantum Theory, Springer–Verlag, New York 1985 Zbl0581.46061MR0805158
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.