A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation

Xiaohui Hu; Pengzhan Huang; Xinlong Feng

Applications of Mathematics (2016)

  • Volume: 61, Issue: 1, page 27-45
  • ISSN: 0862-7940

Abstract

top
In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers’ equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the P 0 2 - P 1 pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results.

How to cite

top

Hu, Xiaohui, Huang, Pengzhan, and Feng, Xinlong. "A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation." Applications of Mathematics 61.1 (2016): 27-45. <http://eudml.org/doc/276246>.

@article{Hu2016,
abstract = {In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers’ equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the $P_0^2-P_1$ pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results.},
author = {Hu, Xiaohui, Huang, Pengzhan, Feng, Xinlong},
journal = {Applications of Mathematics},
keywords = {Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition; Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition},
language = {eng},
number = {1},
pages = {27-45},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation},
url = {http://eudml.org/doc/276246},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Hu, Xiaohui
AU - Huang, Pengzhan
AU - Feng, Xinlong
TI - A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 27
EP - 45
AB - In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers’ equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the $P_0^2-P_1$ pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results.
LA - eng
KW - Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition; Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition
UR - http://eudml.org/doc/276246
ER -

References

top
  1. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65 Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  2. Bateman, H., 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2, Mon. Weather Rev. 43 (1915), 163-170. (1915) DOI10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
  3. Bressan, N., Quarteroni, A., 10.1007/BF02576532, Calcolo 23 (1986), 265-284. (1986) Zbl0691.65081MR0897632DOI10.1007/BF02576532
  4. Cadwell, J., Wanless, P., Cook, A. E., 10.1016/0307-904X(81)90043-3, Appl. Math. Modelling 5 (1981), 189-193. (1981) MR0626869DOI10.1016/0307-904X(81)90043-3
  5. Chen, H., Jiang, Z., 10.1007/BF02935745, J. Appl. Math. Comput. 15 (2004), 29-51. (2004) Zbl1053.65083MR2043967DOI10.1007/BF02935745
  6. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
  7. Crank, J., Nicolson, P., 10.1017/S0305004100023197, Proc. Camb. Philos. Soc. 43 (1947), 50-67 Reprint in Adv. Comput. Math. 6 (1996), 207-226. (1996) Zbl0866.65054MR0019410DOI10.1017/S0305004100023197
  8. Duan, Y., Liu, R., 10.1016/j.cam.2006.08.002, J. Comput. Appl. Math. 206 (2007), 432-439. (2007) Zbl1115.76064MR2337455DOI10.1016/j.cam.2006.08.002
  9. Fletcher, C. A. J., 10.1016/0021-9991(83)90085-2, J. Comput. Phys. 51 (1983), 159-188. (1983) Zbl0525.65077MR0713944DOI10.1016/0021-9991(83)90085-2
  10. He, Y., 10.1137/S0036142901385659, SIAM J. Numer. Anal. 41 (2003), 1263-1285. (2003) Zbl1130.76365MR2034880DOI10.1137/S0036142901385659
  11. He, Y., Li, J., 10.1016/j.cma.2008.12.001, Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. (2009) Zbl1227.76031MR2497612DOI10.1016/j.cma.2008.12.001
  12. He, Y., Sun, W., 10.1137/050639910, SIAM J. Numer. Anal. 45 (2007), 837-869. (2007) Zbl1145.35318MR2300299DOI10.1137/050639910
  13. He, Y., Sun, W., 10.1090/S0025-5718-06-01886-2, Math. Comput. 76 (2007), 115-136. (2007) Zbl1129.35004MR2261014DOI10.1090/S0025-5718-06-01886-2
  14. Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K., FREEFEM++, version 2.3-3, 2008. Software available at http://www.freefem.org, . 
  15. Heywood, J. G., Rannacher, R., 10.1137/0727022, SIAM J. Numer. Anal. 27 (1990), 353-384. (1990) Zbl0694.76014MR1043610DOI10.1137/0727022
  16. Huang, P., Abduwali, A., 10.1016/j.camwa.2009.08.069, Comput. Math. Appl. 59 (2010), 2452-2463. (2010) Zbl1193.65157MR2607949DOI10.1016/j.camwa.2009.08.069
  17. Johnston, H., Liu, J. G., 10.1016/j.jcp.2004.02.009, J. Comput. Phys. 199 (2004), 221-259. (2004) Zbl1127.76343MR2081004DOI10.1016/j.jcp.2004.02.009
  18. Luo, Z., Liu, R., Mixed finite element analysis and numerical simulation for Burgers equation, Math. Numer. Sin. 21 (1999), 257-268 Chinese. (1999) Zbl0933.65117MR1762984
  19. Pany, A. K., Nataraj, N., Singh, S., 10.1007/BF02831957, J. Appl. Math. Comput. 23 (2007), 43-55. (2007) Zbl1124.65095MR2282449DOI10.1007/BF02831957
  20. Shang, Y., Initial-boundary value problems for a class of generalized KdV-Burgers equations, Math. Appl. 9 (1996), 166-171 Chinese. (1996) Zbl0937.35164MR1405073
  21. Shao, L., Feng, X., He, Y., 10.1016/j.mcm.2011.07.016, Math. Comput. Modelling 54 (2011), 2943-2954. (2011) Zbl1235.65115MR2841837DOI10.1016/j.mcm.2011.07.016
  22. Shi, F., Yu, J., Li, K., 10.1080/00207160.2010.534466, Int. J. Comput. Math. 88 (2011), 2293-2305. (2011) Zbl1241.65091MR2818083DOI10.1080/00207160.2010.534466
  23. Weng, Z., Feng, X., Huang, P., 10.1016/j.apm.2011.12.044, Appl. Math. Modelling 36 (2012), 5068-5079. (2012) Zbl1252.65170MR2930402DOI10.1016/j.apm.2011.12.044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.