A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation
Xiaohui Hu; Pengzhan Huang; Xinlong Feng
Applications of Mathematics (2016)
- Volume: 61, Issue: 1, page 27-45
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHu, Xiaohui, Huang, Pengzhan, and Feng, Xinlong. "A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation." Applications of Mathematics 61.1 (2016): 27-45. <http://eudml.org/doc/276246>.
@article{Hu2016,
abstract = {In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers’ equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the $P_0^2-P_1$ pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results.},
author = {Hu, Xiaohui, Huang, Pengzhan, Feng, Xinlong},
journal = {Applications of Mathematics},
keywords = {Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition; Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition},
language = {eng},
number = {1},
pages = {27-45},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation},
url = {http://eudml.org/doc/276246},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Hu, Xiaohui
AU - Huang, Pengzhan
AU - Feng, Xinlong
TI - A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 27
EP - 45
AB - In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers’ equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the $P_0^2-P_1$ pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results.
LA - eng
KW - Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition; Burgers' equation; mixed finite element method; stable conforming finite element; Crank-Nicolson scheme; inf-sup condition
UR - http://eudml.org/doc/276246
ER -
References
top- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65 Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Bateman, H., 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2, Mon. Weather Rev. 43 (1915), 163-170. (1915) DOI10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
- Bressan, N., Quarteroni, A., 10.1007/BF02576532, Calcolo 23 (1986), 265-284. (1986) Zbl0691.65081MR0897632DOI10.1007/BF02576532
- Cadwell, J., Wanless, P., Cook, A. E., 10.1016/0307-904X(81)90043-3, Appl. Math. Modelling 5 (1981), 189-193. (1981) MR0626869DOI10.1016/0307-904X(81)90043-3
- Chen, H., Jiang, Z., 10.1007/BF02935745, J. Appl. Math. Comput. 15 (2004), 29-51. (2004) Zbl1053.65083MR2043967DOI10.1007/BF02935745
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Crank, J., Nicolson, P., 10.1017/S0305004100023197, Proc. Camb. Philos. Soc. 43 (1947), 50-67 Reprint in Adv. Comput. Math. 6 (1996), 207-226. (1996) Zbl0866.65054MR0019410DOI10.1017/S0305004100023197
- Duan, Y., Liu, R., 10.1016/j.cam.2006.08.002, J. Comput. Appl. Math. 206 (2007), 432-439. (2007) Zbl1115.76064MR2337455DOI10.1016/j.cam.2006.08.002
- Fletcher, C. A. J., 10.1016/0021-9991(83)90085-2, J. Comput. Phys. 51 (1983), 159-188. (1983) Zbl0525.65077MR0713944DOI10.1016/0021-9991(83)90085-2
- He, Y., 10.1137/S0036142901385659, SIAM J. Numer. Anal. 41 (2003), 1263-1285. (2003) Zbl1130.76365MR2034880DOI10.1137/S0036142901385659
- He, Y., Li, J., 10.1016/j.cma.2008.12.001, Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. (2009) Zbl1227.76031MR2497612DOI10.1016/j.cma.2008.12.001
- He, Y., Sun, W., 10.1137/050639910, SIAM J. Numer. Anal. 45 (2007), 837-869. (2007) Zbl1145.35318MR2300299DOI10.1137/050639910
- He, Y., Sun, W., 10.1090/S0025-5718-06-01886-2, Math. Comput. 76 (2007), 115-136. (2007) Zbl1129.35004MR2261014DOI10.1090/S0025-5718-06-01886-2
- Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K., FREEFEM++, version 2.3-3, 2008. Software available at http://www.freefem.org, .
- Heywood, J. G., Rannacher, R., 10.1137/0727022, SIAM J. Numer. Anal. 27 (1990), 353-384. (1990) Zbl0694.76014MR1043610DOI10.1137/0727022
- Huang, P., Abduwali, A., 10.1016/j.camwa.2009.08.069, Comput. Math. Appl. 59 (2010), 2452-2463. (2010) Zbl1193.65157MR2607949DOI10.1016/j.camwa.2009.08.069
- Johnston, H., Liu, J. G., 10.1016/j.jcp.2004.02.009, J. Comput. Phys. 199 (2004), 221-259. (2004) Zbl1127.76343MR2081004DOI10.1016/j.jcp.2004.02.009
- Luo, Z., Liu, R., Mixed finite element analysis and numerical simulation for Burgers equation, Math. Numer. Sin. 21 (1999), 257-268 Chinese. (1999) Zbl0933.65117MR1762984
- Pany, A. K., Nataraj, N., Singh, S., 10.1007/BF02831957, J. Appl. Math. Comput. 23 (2007), 43-55. (2007) Zbl1124.65095MR2282449DOI10.1007/BF02831957
- Shang, Y., Initial-boundary value problems for a class of generalized KdV-Burgers equations, Math. Appl. 9 (1996), 166-171 Chinese. (1996) Zbl0937.35164MR1405073
- Shao, L., Feng, X., He, Y., 10.1016/j.mcm.2011.07.016, Math. Comput. Modelling 54 (2011), 2943-2954. (2011) Zbl1235.65115MR2841837DOI10.1016/j.mcm.2011.07.016
- Shi, F., Yu, J., Li, K., 10.1080/00207160.2010.534466, Int. J. Comput. Math. 88 (2011), 2293-2305. (2011) Zbl1241.65091MR2818083DOI10.1080/00207160.2010.534466
- Weng, Z., Feng, X., Huang, P., 10.1016/j.apm.2011.12.044, Appl. Math. Modelling 36 (2012), 5068-5079. (2012) Zbl1252.65170MR2930402DOI10.1016/j.apm.2011.12.044
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.