Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems
Applications of Mathematics (2017)
- Volume: 62, Issue: 5, page 477-492
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTang, Yaozong, and Li, Xiaolin. "Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems." Applications of Mathematics 62.5 (2017): 477-492. <http://eudml.org/doc/294319>.
@article{Tang2017,
abstract = {The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.},
author = {Tang, Yaozong, Li, Xiaolin},
journal = {Applications of Mathematics},
keywords = {meshless; element-free Galerkin method; hyperbolic partial differential equation; error estimate; convergence},
language = {eng},
number = {5},
pages = {477-492},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems},
url = {http://eudml.org/doc/294319},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Tang, Yaozong
AU - Li, Xiaolin
TI - Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 5
SP - 477
EP - 492
AB - The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.
LA - eng
KW - meshless; element-free Galerkin method; hyperbolic partial differential equation; error estimate; convergence
UR - http://eudml.org/doc/294319
ER -
References
top- Abbasbandy, S., Ghehsareh, H. Roohani, Hashim, I., Alsaedi, A., 10.1016/j.enganabound.2014.04.006, Eng. Anal. Bound. Elem. 47 (2014), 10-20. (2014) Zbl1297.65125MR3233886DOI10.1016/j.enganabound.2014.04.006
- Belytschko, T., Lu, Y. Y., Gu, L., 10.1002/nme.1620370205, Int. J. Numer. Methods Eng. 37 (1994), 229-256. (1994) Zbl0796.73077MR1256818DOI10.1002/nme.1620370205
- Berger, M. J., Oliger, J., 10.1016/0021-9991(84)90073-1, J. Comput. Phys. 53 (1984), 484-512. (1984) Zbl0536.65071MR0739112DOI10.1016/0021-9991(84)90073-1
- Cheng, Y. M., Meshless Methods, Science Press, Beijing (2015), Chinese. (2015)
- Cheng, R.-J., Ge, H.-X., 10.1088/1674-1056/18/10/001, Chin. Phys. B. 18 (2009), 4059-4064. (2009) DOI10.1088/1674-1056/18/10/001
- Dehghan, M., Ghesmati, A., 10.1016/j.enganabound.2009.10.010, Eng. Anal. Bound. Elem. 34 (2010), 324-336. (2010) Zbl1244.65147MR2585262DOI10.1016/j.enganabound.2009.10.010
- Dehghan, M., Ghesmati, A., 10.1016/j.enganabound.2009.07.002, Eng. Anal. Bound. Elem. 34 (2010), 51-59. (2010) Zbl1244.65137MR2559257DOI10.1016/j.enganabound.2009.07.002
- Dehghan, M., Salehi, R., 10.1002/mma.2517, Math. Methods Appl. Sci. 35 (2012), 1220-1233. (2012) Zbl1250.35015MR2945847DOI10.1002/mma.2517
- Dehghan, M., Shokri, A., 10.1002/num.20357, Numer. Methods Partial Differ. Equations 25 (2009), 494-506. (2009) Zbl1159.65084MR2483780DOI10.1002/num.20357
- Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). (2010) Zbl1194.35001MR2597943DOI10.1090/gsm/019
- Hu, X., Huang, P., Feng, X., 10.1007/s10492-016-0120-3, Appl. Math., Praha 61 (2016), 27-45. (2016) Zbl06562145MR3455166DOI10.1007/s10492-016-0120-3
- Jiang, Z., Su, L., Jiang, T., 10.1155/2014/978310, Abstr. Appl. Anal. 2014 (2014), Article ID 978310, 11 pages. (2014) MR3246371DOI10.1155/2014/978310
- Li, X., 10.1016/j.apnum.2011.08.003, Appl. Numer. Math. 61 (2011), 1237-1256. (2011) Zbl1232.65160MR2851120DOI10.1016/j.apnum.2011.08.003
- Li, X., 10.1016/j.apnum.2015.07.006, Appl. Numer. Math. 99 (2016), 77-97. (2016) Zbl1329.65274MR3413894DOI10.1016/j.apnum.2015.07.006
- Li, X., Li, S., 10.1016/j.camwa.2016.06.047, Comput. Math. Appl. 72 (2016), 1515-1531. (2016) Zbl1361.65090MR3545373DOI10.1016/j.camwa.2016.06.047
- Li, X., Li, S., 10.1016/j.apm.2017.03.019, Appl. Math. Model. 47 (2017), 45-62. (2017) MR3659439DOI10.1016/j.apm.2017.03.019
- Li, X., Wang, Q., 10.1016/j.enganabound.2016.08.012, Eng. Anal. Bound. Elem. 73 (2016), 21-34. (2016) MR3581428DOI10.1016/j.enganabound.2016.08.012
- Li, X., Zhang, S., Wang, Y., Chen, H., 10.1016/j.camwa.2016.03.007, Comput. Math. Appl. 71 (2016), 1655-1678. (2016) MR3481094DOI10.1016/j.camwa.2016.03.007
- Liu, G. R., 10.1201/9781420082104, CRC Press, Boca Raton (2010). (2010) Zbl1205.74003MR2574356DOI10.1201/9781420082104
- Szekeres, B. J., Izsák, F., 10.21136/AM.2017.0385-15, Appl. Math., Praha 62 (2017), 15-36. (2017) Zbl06738479MR3615476DOI10.21136/AM.2017.0385-15
- Tang, Y.-Z., Li, X.-L., 10.1088/1674-1056/26/3/030203, Chin. Phys. B. 26 (2017), 030203. (2017) DOI10.1088/1674-1056/26/3/030203
- Thomas, J. W., 10.1007/978-1-4899-7278-1, Texts in Applied Mathematics 22 Springer, New York (1995). (1995) Zbl0831.65087MR1367964DOI10.1007/978-1-4899-7278-1
- Zhang, S., Li, X., 10.1007/s10492-016-0129-7, Appl. Math., Praha 61 (2016), 215-231. (2016) Zbl06562154MR3470774DOI10.1007/s10492-016-0129-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.