Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems

Yaozong Tang; Xiaolin Li

Applications of Mathematics (2017)

  • Volume: 62, Issue: 5, page 477-492
  • ISSN: 0862-7940

Abstract

top
The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.

How to cite

top

Tang, Yaozong, and Li, Xiaolin. "Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems." Applications of Mathematics 62.5 (2017): 477-492. <http://eudml.org/doc/294319>.

@article{Tang2017,
abstract = {The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.},
author = {Tang, Yaozong, Li, Xiaolin},
journal = {Applications of Mathematics},
keywords = {meshless; element-free Galerkin method; hyperbolic partial differential equation; error estimate; convergence},
language = {eng},
number = {5},
pages = {477-492},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems},
url = {http://eudml.org/doc/294319},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Tang, Yaozong
AU - Li, Xiaolin
TI - Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 5
SP - 477
EP - 492
AB - The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.
LA - eng
KW - meshless; element-free Galerkin method; hyperbolic partial differential equation; error estimate; convergence
UR - http://eudml.org/doc/294319
ER -

References

top
  1. Abbasbandy, S., Ghehsareh, H. Roohani, Hashim, I., Alsaedi, A., 10.1016/j.enganabound.2014.04.006, Eng. Anal. Bound. Elem. 47 (2014), 10-20. (2014) Zbl1297.65125MR3233886DOI10.1016/j.enganabound.2014.04.006
  2. Belytschko, T., Lu, Y. Y., Gu, L., 10.1002/nme.1620370205, Int. J. Numer. Methods Eng. 37 (1994), 229-256. (1994) Zbl0796.73077MR1256818DOI10.1002/nme.1620370205
  3. Berger, M. J., Oliger, J., 10.1016/0021-9991(84)90073-1, J. Comput. Phys. 53 (1984), 484-512. (1984) Zbl0536.65071MR0739112DOI10.1016/0021-9991(84)90073-1
  4. Cheng, Y. M., Meshless Methods, Science Press, Beijing (2015), Chinese. (2015) 
  5. Cheng, R.-J., Ge, H.-X., 10.1088/1674-1056/18/10/001, Chin. Phys. B. 18 (2009), 4059-4064. (2009) DOI10.1088/1674-1056/18/10/001
  6. Dehghan, M., Ghesmati, A., 10.1016/j.enganabound.2009.10.010, Eng. Anal. Bound. Elem. 34 (2010), 324-336. (2010) Zbl1244.65147MR2585262DOI10.1016/j.enganabound.2009.10.010
  7. Dehghan, M., Ghesmati, A., 10.1016/j.enganabound.2009.07.002, Eng. Anal. Bound. Elem. 34 (2010), 51-59. (2010) Zbl1244.65137MR2559257DOI10.1016/j.enganabound.2009.07.002
  8. Dehghan, M., Salehi, R., 10.1002/mma.2517, Math. Methods Appl. Sci. 35 (2012), 1220-1233. (2012) Zbl1250.35015MR2945847DOI10.1002/mma.2517
  9. Dehghan, M., Shokri, A., 10.1002/num.20357, Numer. Methods Partial Differ. Equations 25 (2009), 494-506. (2009) Zbl1159.65084MR2483780DOI10.1002/num.20357
  10. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). (2010) Zbl1194.35001MR2597943DOI10.1090/gsm/019
  11. Hu, X., Huang, P., Feng, X., 10.1007/s10492-016-0120-3, Appl. Math., Praha 61 (2016), 27-45. (2016) Zbl06562145MR3455166DOI10.1007/s10492-016-0120-3
  12. Jiang, Z., Su, L., Jiang, T., 10.1155/2014/978310, Abstr. Appl. Anal. 2014 (2014), Article ID 978310, 11 pages. (2014) MR3246371DOI10.1155/2014/978310
  13. Li, X., 10.1016/j.apnum.2011.08.003, Appl. Numer. Math. 61 (2011), 1237-1256. (2011) Zbl1232.65160MR2851120DOI10.1016/j.apnum.2011.08.003
  14. Li, X., 10.1016/j.apnum.2015.07.006, Appl. Numer. Math. 99 (2016), 77-97. (2016) Zbl1329.65274MR3413894DOI10.1016/j.apnum.2015.07.006
  15. Li, X., Li, S., 10.1016/j.camwa.2016.06.047, Comput. Math. Appl. 72 (2016), 1515-1531. (2016) Zbl1361.65090MR3545373DOI10.1016/j.camwa.2016.06.047
  16. Li, X., Li, S., 10.1016/j.apm.2017.03.019, Appl. Math. Model. 47 (2017), 45-62. (2017) MR3659439DOI10.1016/j.apm.2017.03.019
  17. Li, X., Wang, Q., 10.1016/j.enganabound.2016.08.012, Eng. Anal. Bound. Elem. 73 (2016), 21-34. (2016) MR3581428DOI10.1016/j.enganabound.2016.08.012
  18. Li, X., Zhang, S., Wang, Y., Chen, H., 10.1016/j.camwa.2016.03.007, Comput. Math. Appl. 71 (2016), 1655-1678. (2016) MR3481094DOI10.1016/j.camwa.2016.03.007
  19. Liu, G. R., 10.1201/9781420082104, CRC Press, Boca Raton (2010). (2010) Zbl1205.74003MR2574356DOI10.1201/9781420082104
  20. Szekeres, B. J., Izsák, F., 10.21136/AM.2017.0385-15, Appl. Math., Praha 62 (2017), 15-36. (2017) Zbl06738479MR3615476DOI10.21136/AM.2017.0385-15
  21. Tang, Y.-Z., Li, X.-L., 10.1088/1674-1056/26/3/030203, Chin. Phys. B. 26 (2017), 030203. (2017) DOI10.1088/1674-1056/26/3/030203
  22. Thomas, J. W., 10.1007/978-1-4899-7278-1, Texts in Applied Mathematics 22 Springer, New York (1995). (1995) Zbl0831.65087MR1367964DOI10.1007/978-1-4899-7278-1
  23. Zhang, S., Li, X., 10.1007/s10492-016-0129-7, Appl. Math., Praha 61 (2016), 215-231. (2016) Zbl06562154MR3470774DOI10.1007/s10492-016-0129-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.