Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces

Takao Ohno; Tetsu Shimomura

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 209-228
  • ISSN: 0011-4642

Abstract

top
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.

How to cite

top

Ohno, Takao, and Shimomura, Tetsu. "Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces." Czechoslovak Mathematical Journal 64.1 (2014): 209-228. <http://eudml.org/doc/261984>.

@article{Ohno2014,
abstract = {Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.},
author = {Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {grand Morrey space; variable exponent; non-doubling measure; metric measure space; Riesz potential; maximal operator; Sobolev's inequality; Trudinger's exponential inequality; continuity; grand Morrey space; variable exponent; non-doubling measure; metric measure space; Riesz potential; maximal operator; Sobolev's inequality; Trudinger's exponential inequality; continuity},
language = {eng},
number = {1},
pages = {209-228},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces},
url = {http://eudml.org/doc/261984},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 209
EP - 228
AB - Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.
LA - eng
KW - grand Morrey space; variable exponent; non-doubling measure; metric measure space; Riesz potential; maximal operator; Sobolev's inequality; Trudinger's exponential inequality; continuity; grand Morrey space; variable exponent; non-doubling measure; metric measure space; Riesz potential; maximal operator; Sobolev's inequality; Trudinger's exponential inequality; continuity
UR - http://eudml.org/doc/261984
ER -

References

top
  1. Adams, D. R., 10.1215/S0012-7094-75-04265-9, Duke Math. J. 42 (1975), 765-778. (1975) Zbl0336.46038MR0458158DOI10.1215/S0012-7094-75-04265-9
  2. Adams, D. R., Hedberg, L. I., Function Spaces and Potential Theory, Fundamental Principles of Mathematical Sciences 314 Springer, Berlin (1995). (1995) Zbl0834.46021MR1411441
  3. Almeida, A., Hasanov, J., Samko, S. G., Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), 195-208. (2008) Zbl1263.42002MR2428465
  4. Bojarski, B., Hajłasz, P., Pointwise inequalities for Sobolev functions and some applications, Stud. Math. 106 (1993), 77-92. (1993) Zbl0810.46030MR1226425
  5. Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. (1987) Zbl0717.42023MR0985999
  6. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., The maximal function on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238; Corrections to “The maximal function on variable spaces” Ann. Acad. Sci. Fenn., Math. 29 (2004), 247-249. (2004) Zbl1064.42500MR2041952
  7. Diening, L., Maximal function in generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245-253. (2004) MR2057643
  8. Diening, L., 10.1002/mana.200310157, Math. Nachr. 268 (2004), 31-43. (2004) Zbl1065.46024MR2054530DOI10.1002/mana.200310157
  9. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
  10. Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Stud. Math. 115 (1995), 151-181. (1995) Zbl0829.47024MR1347439
  11. Edmunds, D. E., Gurka, P., Opic, B., Sharpness of embeddings in logarithmic Besselpotential spaces, Proc. R. Soc. Edinb., Sect. A 126 (1996), 995-1009. (1996) MR1415818
  12. Edmunds, D. E., Hurri-Syrjänen, R., 10.1007/BF02784120, Isr. J. Math. 123 (2001), 61-92. (2001) Zbl0991.46019MR1835289DOI10.1007/BF02784120
  13. Edmunds, D. E., Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128. (1995) Zbl0835.46027MR1331250
  14. Fiorenza, A., Gupta, B., Jain, P., 10.4064/sm188-2-2, Stud. Math. 188 (2008), 123-133. (2008) Zbl1161.42011MR2430998DOI10.4064/sm188-2-2
  15. Fiorenza, A., Krbec, M., 10.1017/S0027763000007285, Nagoya Math. J. 158 (2000), 43-61. (2000) Zbl1039.42015MR1766576DOI10.1017/S0027763000007285
  16. Fiorenza, A., Sbordone, C., Existence and uniqueness results for solutions of nonlinear equations with right hand side in L 1 , Stud. Math. 127 (1998), 223-231. (1998) Zbl0891.35039MR1489454
  17. Futamura, T., Mizuta, Y., Continuity properties of Riesz potentials for function in L p ( · ) of variable exponent, Math. Inequal. Appl. 8 (2005), 619-631. (2005) MR2174890
  18. Futamura, T., Mizuta, Y., Shimomura, T., 10.1016/j.jmaa.2010.01.053, J. Math. Anal. Appl. 366 (2010), 391-417. (2010) Zbl1193.46016MR2600488DOI10.1016/j.jmaa.2010.01.053
  19. Futamura, T., Mizuta, Y., Shimomura, T., Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. (2006) Zbl1100.31002MR2248828
  20. Greco, L., Iwaniec, T., Sbordone, C., 10.1007/BF02678192, Manuscr. Math. 92 (1997), 249-258. (1997) Zbl0869.35037MR1428651DOI10.1007/BF02678192
  21. Guliyev, V. S., Hasanov, J. J., Samko, S. G., 10.1007/s10958-010-0095-7, J. Math. Sci. (N.Y.) 170 (2010), 423-443. (2010) MR2839874DOI10.1007/s10958-010-0095-7
  22. Guliyev, V. S., Hasanov, J. J., Samko, S. G., 10.7146/math.scand.a-15156, Math. Scand. 107 (2010), 285-304. (2010) Zbl1213.42077MR2735097DOI10.7146/math.scand.a-15156
  23. Gunawan, H., Sawano, Y., Sihwaningrum, I., 10.1017/S0004972709000343, Bull. Aust. Math. Soc. 80 (2009), 324-334. (2009) Zbl1176.42012MR2540365DOI10.1017/S0004972709000343
  24. Hajłasz, P., Koskela, P., Sobolev met Poincaré, Mem. Am. Math. Soc. 688 (2000), 101 pages. (2000) Zbl0954.46022MR1683160
  25. Harjulehto, P., Hästö, P., Pere, M., Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exch. 30 (2004/2005), 87-104. (2004) MR2126796
  26. Hedberg, L. I., 10.1090/S0002-9939-1972-0312232-4, Proc. Am. Math. Soc. 36 (1972), 505-510. (1972) MR0312232DOI10.1090/S0002-9939-1972-0312232-4
  27. Iwaniec, T., Sbordone, C., 10.1007/BF00375119, Arch. Ration. Mech. Anal. 119 (1992), 129-143. (1992) Zbl0766.46016MR1176362DOI10.1007/BF00375119
  28. Iwaniec, T., Sbordone, C., 10.1007/BF02819450, J. Anal. Math. 74 (1998), 183-212. (1998) Zbl0909.35039MR1631658DOI10.1007/BF02819450
  29. Kinnunen, J., 10.1007/BF02773636, Isr. J. Math. 100 (1997), 117-124. (1997) Zbl0882.43003MR1469106DOI10.1007/BF02773636
  30. Kokilashvili, V., Meskhi, A., Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure, Complex Var. Elliptic Equ. 55 (2010), 923-936. (2010) Zbl1205.26014MR2674873
  31. Kokilashvili, V., Samko, S. G., Boundedness of weighted singular integral operators in grand Lebesgue spaces, Georgian Math. J. 18 (2011), 259-269. (2011) Zbl1239.42014MR2805980
  32. Meskhi, A., Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Equ. 56 (2011), 1003-1019. (2011) Zbl1261.42022MR2838234
  33. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.2969/jmsj/06230707, J. Math. Soc. Japan 62 (2010), 707-744. (2010) Zbl1200.26007MR2648060DOI10.2969/jmsj/06230707
  34. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents, Complex Var. Elliptic Equ. 56 (2011), 671-695. (2011) Zbl1228.31004MR2832209
  35. Mizuta, Y., Shimomura, T., 10.2748/tmj/1245849445, Tohoku Math. J. 61 (2009), 225-240. (2009) Zbl1181.46026MR2541407DOI10.2748/tmj/1245849445
  36. Mizuta, Y., Shimomura, T., 10.2969/jmsj/06020583, J. Math. Soc. Japan 60 (2008), 583-602. (2008) Zbl1161.46305MR2421989DOI10.2969/jmsj/06020583
  37. Jr., C. B. Morrey, 10.1090/S0002-9947-1938-1501936-8, Trans. Am. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.1090/S0002-9947-1938-1501936-8
  38. Nakai, E., 10.1002/mana.19941660108, Math. Nachr. 166 (1994), 95-103. (1994) Zbl0837.42008MR1273325DOI10.1002/mana.19941660108
  39. Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 (1969), 71-87. (1969) MR0241965DOI10.1016/0022-1236(69)90022-6
  40. Sawano, Y., 10.1007/s00030-008-6032-5, NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 413-425. (2008) Zbl1173.42317MR2465971DOI10.1007/s00030-008-6032-5
  41. Sawano, Y., Tanaka, H., 10.1007/s10114-005-0660-z, Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. (2005) Zbl1129.42403MR2190025DOI10.1007/s10114-005-0660-z
  42. Sbordone, C., Grand Sobolev spaces and their application to variational problems, Matematiche 51 (1996), 335-347. (1996) Zbl0915.46030MR1488076
  43. Serrin, J., A remark on Morrey potential, Control Methods in PDE-Dynamical Systems. AMS-IMS-SIAM joint summer research conference, 2005 F. Ancona et al. Contemporary Mathematics 426 American Mathematical Society, Providence (2007), 307-315. (2007) MR2311532
  44. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30 Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095
  45. Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. (1967) Zbl0163.36402MR0216286
  46. Ziemer, W. P., 10.1007/978-1-4612-1015-3, Graduate Texts in Mathematics 120 Springer, Berlin (1989). (1989) Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.