Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces
Archivum Mathematicum (2015)
- Volume: 051, Issue: 4, page 233-254
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDragomir, S.S.. "Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces." Archivum Mathematicum 051.4 (2015): 233-254. <http://eudml.org/doc/276275>.
@article{Dragomir2015,
abstract = {Some Ostrowski’s type inequalities for the Riemann-Stieltjes integral $\int _\{a\}^\{b\}f\left( e^\{it\}\right) du\left( t\right) $ of continuous complex valued integrands $f\colon \mathcal \{C\}\left( 0,1\right) \rightarrow \mathbb \{C\}$ defined on the complex unit circle $\mathcal \{C\}\left( 0,1\right) $ and various subclasses of integrators $u\colon \left[ a,b\right] \subseteq \left[ 0,2\pi \right] \rightarrow \mathbb \{C\}$ of bounded variation are given. Natural applications for functions of unitary operators in Hilbert spaces are provided as well.},
author = {Dragomir, S.S.},
journal = {Archivum Mathematicum},
keywords = {Ostrowski’s type inequalities; Riemann-Stieltjes integral inequalities; unitary operators in Hilbert spaces; spectral theory; quadrature rules},
language = {eng},
number = {4},
pages = {233-254},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces},
url = {http://eudml.org/doc/276275},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Dragomir, S.S.
TI - Ostrowski’s type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 4
SP - 233
EP - 254
AB - Some Ostrowski’s type inequalities for the Riemann-Stieltjes integral $\int _{a}^{b}f\left( e^{it}\right) du\left( t\right) $ of continuous complex valued integrands $f\colon \mathcal {C}\left( 0,1\right) \rightarrow \mathbb {C}$ defined on the complex unit circle $\mathcal {C}\left( 0,1\right) $ and various subclasses of integrators $u\colon \left[ a,b\right] \subseteq \left[ 0,2\pi \right] \rightarrow \mathbb {C}$ of bounded variation are given. Natural applications for functions of unitary operators in Hilbert spaces are provided as well.
LA - eng
KW - Ostrowski’s type inequalities; Riemann-Stieltjes integral inequalities; unitary operators in Hilbert spaces; spectral theory; quadrature rules
UR - http://eudml.org/doc/276275
ER -
References
top- Dragomir, S. S., On the Ostrowski’s inequality for Riemann-Stieltjes integral, Korean J. Appl. Math. 7 (2000), 477–485. (2000) Zbl0969.26017
- Dragomir, S. S., On the Ostrowski inequality for Riemann-Stieltjes integral where is of Hölder type and is of bounded variation and applications, J. KSIAM 5 (1) (2001), 35–45. (2001)
- Dragomir, S. S., 10.15352/afa/1399900269, Ann. Funct. Anal. 2 (1) (2011), 139–205. (2011) Zbl1231.47012MR2811214DOI10.15352/afa/1399900269
- Dragomir, S. S., 10.1016/j.camwa.2011.10.020, Comput. Math. Appl. 62 (12) (2011), 4439–4448. (2011) Zbl1236.26016MR2855586DOI10.1016/j.camwa.2011.10.020
- Helmberg, G., Introduction to Spectral Theory in Hilbert Space, John Wiley and Sons, 1969. (1969) Zbl0177.42401MR0243367
- Ostrowski, A., 10.1007/BF01214290, erman), Comment. Math. Helv. 10 (1) (1937), 226–227. (1937) MR1509574DOI10.1007/BF01214290
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.