Finitistic dimension and restricted injective dimension
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 1023-1031
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWu, Dejun. "Finitistic dimension and restricted injective dimension." Czechoslovak Mathematical Journal 65.4 (2015): 1023-1031. <http://eudml.org/doc/276318>.
@article{Wu2015,
abstract = {We study the relations between finitistic dimensions and restricted injective dimensions. Let $R$ be a ring and $T$ a left $R$-module with $A=\mathop \{\rm End\}_RT$. If $_RT$ is selforthogonal, then we show that $\mathop \{\rm rid\}(T_A)\le \mathop \{\rm findim\}(A_A)\le \mathop \{\rm findim\}(_RT)+\mathop \{\rm rid\}(T_A)$. Moreover, if $R$ is a left noetherian ring and $T$ is a finitely generated left $R$-module with finite injective dimension, then $\mathop \{\rm rid\}(T_A)\le \mathop \{\rm findim\}(A_A)\le \mathop \{\rm fin.inj.dim\}(_RR)+\mathop \{\rm rid\}(T_A)$. Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension.},
author = {Wu, Dejun},
journal = {Czechoslovak Mathematical Journal},
keywords = {finitistic dimension; restricted injective dimension; tilting module},
language = {eng},
number = {4},
pages = {1023-1031},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finitistic dimension and restricted injective dimension},
url = {http://eudml.org/doc/276318},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Wu, Dejun
TI - Finitistic dimension and restricted injective dimension
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1023
EP - 1031
AB - We study the relations between finitistic dimensions and restricted injective dimensions. Let $R$ be a ring and $T$ a left $R$-module with $A=\mathop {\rm End}_RT$. If $_RT$ is selforthogonal, then we show that $\mathop {\rm rid}(T_A)\le \mathop {\rm findim}(A_A)\le \mathop {\rm findim}(_RT)+\mathop {\rm rid}(T_A)$. Moreover, if $R$ is a left noetherian ring and $T$ is a finitely generated left $R$-module with finite injective dimension, then $\mathop {\rm rid}(T_A)\le \mathop {\rm findim}(A_A)\le \mathop {\rm fin.inj.dim}(_RR)+\mathop {\rm rid}(T_A)$. Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension.
LA - eng
KW - finitistic dimension; restricted injective dimension; tilting module
UR - http://eudml.org/doc/276318
ER -
References
top- Angeleri-Hügel, L., Trlifaj, J., 10.1090/S0002-9947-02-03066-0, Trans. Am. Math. Soc. 354 (2002), 4345-4358. (2002) Zbl1028.16004MR1926879DOI10.1090/S0002-9947-02-03066-0
- Asadollahi, J., Salarian, S., 10.1080/00927870600639815, Commun. Algebra 34 (2006), 3009-3022. (2006) Zbl1106.13024MR2250584DOI10.1080/00927870600639815
- Auslander, M., Reiten, I., Smal{ø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36 Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422
- Buan, A. B., Krause, H., Solberg, {Ø., On the lattice of cotilting modules, AMA, Algebra Montp. Announc. (electronic only) 2002 (2002), Paper 2, 6 pages. (2002) Zbl1012.16014MR1882670
- Christensen, L. W., Foxby, H.-B., Frankild, A., 10.1006/jabr.2001.9115, J. Algebra 251 (2002), 479-502. (2002) Zbl1073.13501MR1900297DOI10.1006/jabr.2001.9115
- Green, E. L., Kirkman, E., Kuzmanovich, J., 10.1016/0021-8693(91)90062-D, J. Algebra 136 (1991), 37-50. (1991) Zbl0727.16003MR1085118DOI10.1016/0021-8693(91)90062-D
- Smal{ø, S. O., Homological differences between finite and infinite dimensional representations of algebras, Infinite Length Modules. Proceedings of the Conference, Bielefeld, Germany, 1998 H. Krause et al. Trends Math. Birkhäuser, Basel (2000), 425-439. (2000) Zbl0991.16002MR1798916
- Wei, J., 10.1016/j.jalgebra.2008.03.017, J. Algebra 320 (2008), 116-127. (2008) Zbl1160.16003MR2417981DOI10.1016/j.jalgebra.2008.03.017
- Xi, C., 10.1016/j.aim.2005.02.002, Adv. Math. 201 (2006), 116-142. (2006) Zbl1103.18011MR2204752DOI10.1016/j.aim.2005.02.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.