Finitistic dimension and restricted injective dimension

Dejun Wu

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 4, page 1023-1031
  • ISSN: 0011-4642

Abstract

top
We study the relations between finitistic dimensions and restricted injective dimensions. Let R be a ring and T a left R -module with A = End R T . If R T is selforthogonal, then we show that rid ( T A ) findim ( A A ) findim ( R T ) + rid ( T A ) . Moreover, if R is a left noetherian ring and T is a finitely generated left R -module with finite injective dimension, then rid ( T A ) findim ( A A ) fin . inj . dim ( R R ) + rid ( T A ) . Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension.

How to cite

top

Wu, Dejun. "Finitistic dimension and restricted injective dimension." Czechoslovak Mathematical Journal 65.4 (2015): 1023-1031. <http://eudml.org/doc/276318>.

@article{Wu2015,
abstract = {We study the relations between finitistic dimensions and restricted injective dimensions. Let $R$ be a ring and $T$ a left $R$-module with $A=\mathop \{\rm End\}_RT$. If $_RT$ is selforthogonal, then we show that $\mathop \{\rm rid\}(T_A)\le \mathop \{\rm findim\}(A_A)\le \mathop \{\rm findim\}(_RT)+\mathop \{\rm rid\}(T_A)$. Moreover, if $R$ is a left noetherian ring and $T$ is a finitely generated left $R$-module with finite injective dimension, then $\mathop \{\rm rid\}(T_A)\le \mathop \{\rm findim\}(A_A)\le \mathop \{\rm fin.inj.dim\}(_RR)+\mathop \{\rm rid\}(T_A)$. Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension.},
author = {Wu, Dejun},
journal = {Czechoslovak Mathematical Journal},
keywords = {finitistic dimension; restricted injective dimension; tilting module},
language = {eng},
number = {4},
pages = {1023-1031},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finitistic dimension and restricted injective dimension},
url = {http://eudml.org/doc/276318},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Wu, Dejun
TI - Finitistic dimension and restricted injective dimension
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1023
EP - 1031
AB - We study the relations between finitistic dimensions and restricted injective dimensions. Let $R$ be a ring and $T$ a left $R$-module with $A=\mathop {\rm End}_RT$. If $_RT$ is selforthogonal, then we show that $\mathop {\rm rid}(T_A)\le \mathop {\rm findim}(A_A)\le \mathop {\rm findim}(_RT)+\mathop {\rm rid}(T_A)$. Moreover, if $R$ is a left noetherian ring and $T$ is a finitely generated left $R$-module with finite injective dimension, then $\mathop {\rm rid}(T_A)\le \mathop {\rm findim}(A_A)\le \mathop {\rm fin.inj.dim}(_RR)+\mathop {\rm rid}(T_A)$. Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension.
LA - eng
KW - finitistic dimension; restricted injective dimension; tilting module
UR - http://eudml.org/doc/276318
ER -

References

top
  1. Angeleri-Hügel, L., Trlifaj, J., 10.1090/S0002-9947-02-03066-0, Trans. Am. Math. Soc. 354 (2002), 4345-4358. (2002) Zbl1028.16004MR1926879DOI10.1090/S0002-9947-02-03066-0
  2. Asadollahi, J., Salarian, S., 10.1080/00927870600639815, Commun. Algebra 34 (2006), 3009-3022. (2006) Zbl1106.13024MR2250584DOI10.1080/00927870600639815
  3. Auslander, M., Reiten, I., Smal{ø, S. O., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36 Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422
  4. Buan, A. B., Krause, H., Solberg, {Ø., On the lattice of cotilting modules, AMA, Algebra Montp. Announc. (electronic only) 2002 (2002), Paper 2, 6 pages. (2002) Zbl1012.16014MR1882670
  5. Christensen, L. W., Foxby, H.-B., Frankild, A., 10.1006/jabr.2001.9115, J. Algebra 251 (2002), 479-502. (2002) Zbl1073.13501MR1900297DOI10.1006/jabr.2001.9115
  6. Green, E. L., Kirkman, E., Kuzmanovich, J., 10.1016/0021-8693(91)90062-D, J. Algebra 136 (1991), 37-50. (1991) Zbl0727.16003MR1085118DOI10.1016/0021-8693(91)90062-D
  7. Smal{ø, S. O., Homological differences between finite and infinite dimensional representations of algebras, Infinite Length Modules. Proceedings of the Conference, Bielefeld, Germany, 1998 H. Krause et al. Trends Math. Birkhäuser, Basel (2000), 425-439. (2000) Zbl0991.16002MR1798916
  8. Wei, J., 10.1016/j.jalgebra.2008.03.017, J. Algebra 320 (2008), 116-127. (2008) Zbl1160.16003MR2417981DOI10.1016/j.jalgebra.2008.03.017
  9. Xi, C., 10.1016/j.aim.2005.02.002, Adv. Math. 201 (2006), 116-142. (2006) Zbl1103.18011MR2204752DOI10.1016/j.aim.2005.02.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.