Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique
Alaeddin Malek; Najmeh Hosseinipour-Mahani
Kybernetika (2015)
- Volume: 51, Issue: 5, page 890-908
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMalek, Alaeddin, and Hosseinipour-Mahani, Najmeh. "Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique." Kybernetika 51.5 (2015): 890-908. <http://eudml.org/doc/276322>.
@article{Malek2015,
abstract = {In this paper, based on a generalized Karush-Kuhn-Tucker (KKT) method a modified recurrent neural network model for a class of non-convex quadratic programming problems involving a so-called $Z$-matrix is proposed. The basic idea is to express the optimality condition as a mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing the global solutions of the original problem by using results from the S-lemma. This process is proved by building up a dynamic system from the optimality condition whose equilibrium point is exactly the solution of the mixed nonlinear complementarity problem. By the study of the resulting dynamic system it is shown that under given assumptions, steady states of the dynamic system are stable. Numerical simulations and comparisons with the other methods are presented to illustrate the efficiency of the practical technique that is proposed in this paper.},
author = {Malek, Alaeddin, Hosseinipour-Mahani, Najmeh},
journal = {Kybernetika},
keywords = {non-convex quadratic optimization; recurrent neural network model; global optimality conditions; global convergence},
language = {eng},
number = {5},
pages = {890-908},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique},
url = {http://eudml.org/doc/276322},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Malek, Alaeddin
AU - Hosseinipour-Mahani, Najmeh
TI - Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 890
EP - 908
AB - In this paper, based on a generalized Karush-Kuhn-Tucker (KKT) method a modified recurrent neural network model for a class of non-convex quadratic programming problems involving a so-called $Z$-matrix is proposed. The basic idea is to express the optimality condition as a mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing the global solutions of the original problem by using results from the S-lemma. This process is proved by building up a dynamic system from the optimality condition whose equilibrium point is exactly the solution of the mixed nonlinear complementarity problem. By the study of the resulting dynamic system it is shown that under given assumptions, steady states of the dynamic system are stable. Numerical simulations and comparisons with the other methods are presented to illustrate the efficiency of the practical technique that is proposed in this paper.
LA - eng
KW - non-convex quadratic optimization; recurrent neural network model; global optimality conditions; global convergence
UR - http://eudml.org/doc/276322
ER -
References
top- Bazaraa, M. S., Shetty, C. M., Nonlinear Programming Theory and Algorithms., Wiley and Sons, New York 1990. Zbl1140.90040MR0533477
- Beyer, D., Ogier, R., Tabu learning: A neural network search method for solving nonconvex optimization problems., IEEE Int. Joint Conf. Neural Networks 2 (2000), 953-961.
- Bian, W., Xue, X., 10.1109/tnn.2009.2016340, IEEE Trans. Neural Networks 20 (2009), 6, 1024-1038. MR2497796DOI10.1109/tnn.2009.2016340
- Chicone, C., Ordinary Differential Equations with Applications. Second edition., Springer-Verlag, New York 2006. MR2224508
- Forti, M., Nistri, P., Quincampoix, M., 10.1109/tnn.2006.879775, IEEE Trans. Neural Networka 17 (2006), 6, 1471-1486. DOI10.1109/tnn.2006.879775
- Gao, X. B., 10.1109/tnn.2004.824425, IEEE Trans. Neural Network 15 (2004), 613-621. DOI10.1109/tnn.2004.824425
- Hu, X., 10.5772/5551, In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, ed.), IN-TECH, 2008, pp. 289-308. DOI10.5772/5551
- Jeyakumar, V., Rubinov, A. M., Wu, Z. Y., 10.1007/s10107-006-0012-5, Math. Program., Ser. A 110 (2007), 521-541. Zbl1206.90178MR2324960DOI10.1007/s10107-006-0012-5
- Jeyakumar, V., Lee, G. M., Li, G. Y., 10.1137/080736090, SIAM J. Optim 20 (2009), 2, 983-1001. Zbl1197.90315MR2534772DOI10.1137/080736090
- Jeyakumar, V., Srisatkunarajah, S., 10.1007/s11590-008-0088-3, Optim. Lett. 3 (2009), 23-33. MR2453502DOI10.1007/s11590-008-0088-3
- Khalil, H. K., Nonlinear Systems. Third edition., Prentice Hall, 2002.
- Malek, A., 10.5772/5556, In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, eds.), IN-TECH, 2008, pp. 255-288. DOI10.5772/5556
- Malek, A., Alipour, M., 10.1016/j.amc.2007.02.149, Appl. Math. Comput 192 (2007), 27-39. Zbl1193.90164MR2385566DOI10.1016/j.amc.2007.02.149
- Malek, A., Hosseinipour-Mahani, N., Ezazipour, S., 10.1080/10556780902856743, Optimization Methods and Software 25 (2010), 489-506. Zbl1225.90129MR2724153DOI10.1080/10556780902856743
- Malek, A., Ezazipour, S., Hosseinipour-Mahani, N., Double projection neural network for solving pseudomonotone variational inequalities., Fixed Point Theory 12 (2011), 2, 401-418. MR2895702
- Malek, A., Ezazipour, S., Hosseinipour-Mahani, N., Projected dynamical systems and optimization problems., Bull. Iranian Math. Soc. 37 (2011), 2, 81-96. Zbl1253.37091MR2890580
- Malek, A., Yari, A., 10.1016/j.amc.2004.06.081, Appl. Math. Comput. 169 (2005), 198-211. MR2170909DOI10.1016/j.amc.2004.06.081
- Miller, R. K., Michel, A. N., 10.1016/b978-0-12-497280-3.50008-6, Academic Press, 1982. Zbl0552.34001MR0660250DOI10.1016/b978-0-12-497280-3.50008-6
- Polik, I., Terlaky, T., 10.1137/s003614450444614x, SIAM Rev. 49 (2007), 371-418. Zbl1128.90046MR2353804DOI10.1137/s003614450444614x
- Sun, C. Y., Feng, C. B., 10.1007/11427391_111, In: Lecture Notes in Computer Science 3495, Springer-Verlag, Berlin 2005, pp. 694-699. Zbl1082.68702DOI10.1007/11427391_111
- Tao, Q., Liu, X., Xue, M. S., 10.1016/s0096-3003(03)00309-6, Appl. Math. Comput. 150 (2004), 811-820. Zbl1161.65333MR2039677DOI10.1016/s0096-3003(03)00309-6
- Tian, Y., Lu, Ch., 10.3934/jimo.2011.7.1027, J. Industr. Managment Optim. 7 (2011), 1027-1039. Zbl1231.90317MR2824780DOI10.3934/jimo.2011.7.1027
- Xia, Y., Feng, G., Wang, J., 10.1016/j.neunet.2004.05.006, Neural Networks 17 (2004), 1003-1015. DOI10.1016/j.neunet.2004.05.006
- Xia, Y. S., Feng, G., Wang, J., 10.1109/tnn.2008.2000273, IEEE Trans. Neural Networks 19 (2008), 1340-1353. DOI10.1109/tnn.2008.2000273
- Xue, X., Bian, W., 10.1016/j.neucom.2006.10.038, Neurocomputing 70 (2007), 2449-2459. DOI10.1016/j.neucom.2006.10.038
- Yan, Z., Wang, J., Li, G., 10.1016/j.neunet.2014.03.006, Neural networks 55 (2014), 20-29. Zbl1308.90137DOI10.1016/j.neunet.2014.03.006
- Yashtini, M., Malek, A., 10.1016/j.amc.2007.01.036, Appl. Math. Comput. 190 (2007), 216-230. Zbl1128.65052MR2335442DOI10.1016/j.amc.2007.01.036
- Zhang, Y., 10.1007/bf01581194, Math. Programming 55 (1992), 109-124. Zbl0773.90056MR1163297DOI10.1007/bf01581194
- Zheng, X. J., Sun, X. L., Li, D., Xu, Y. F., 10.1007/s10898-011-9660-y, Global Optim. 52 (2012), 229-242. Zbl1266.90151MR2886307DOI10.1007/s10898-011-9660-y
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.