A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints
Soraya Ezazipour; Ahmad Golbabai
Kybernetika (2020)
- Volume: 56, Issue: 3, page 383-409
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topEzazipour, Soraya, and Golbabai, Ahmad. "A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints." Kybernetika 56.3 (2020): 383-409. <http://eudml.org/doc/297375>.
@article{Ezazipour2020,
abstract = {This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems.},
author = {Ezazipour, Soraya, Golbabai, Ahmad},
journal = {Kybernetika},
keywords = {neural network; mathematical programming with equilibrium constraints; asymptotically stability; globally convergence},
language = {eng},
number = {3},
pages = {383-409},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints},
url = {http://eudml.org/doc/297375},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Ezazipour, Soraya
AU - Golbabai, Ahmad
TI - A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 383
EP - 409
AB - This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems.
LA - eng
KW - neural network; mathematical programming with equilibrium constraints; asymptotically stability; globally convergence
UR - http://eudml.org/doc/297375
ER -
References
top- Andreani, R., Martínez, J. M., 10.1007/s001860100158, Math. Methods Oper. Res. 54 (2001), 345-359. MR1890905DOI10.1007/s001860100158
- Aiyoshi, E., Shimizu, K., 10.1109/tsmc.1981.4308712, IEEE Trans. Systems Man Cybernet. 11 (1981), 444-449. MR0631815DOI10.1109/tsmc.1981.4308712
- Bard, J. F., 10.1109/tsmc.1981.4308712, Math. Program. 40 (1988), 15-27. MR0923693DOI10.1109/tsmc.1981.4308712
- Chen, J. S., 10.1142/s0217595907001292, Asia-Pacific J. Oper. Res. 24 (2007), 401-420. MR2335554DOI10.1142/s0217595907001292
- Facchinei, F., Jiang, H., Qi, L., 10.1007/s10107990015a, Math. Program. 85 (1999), 107-134. Zbl0959.65079MR1689366DOI10.1007/s10107990015a
- Ferris, M. C., Dirkse, S. P., Meeraus, A., 10.1017/cbo9780511614330.005, Frontiers in Applied General Equilibrium Modeling, Cambridge University Press 2002, pp. 67-94. DOI10.1017/cbo9780511614330.005
- Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S., 10.1137/s1052623402407382, SIAM J. Optim. 17 (2006), 259-286. Zbl1112.90098MR2219153DOI10.1137/s1052623402407382
- Facchinei, F., Soares, J., 10.1137/s1052623494279110, SIAM J. Optim. 7 (1997), 225-247. MR1430565DOI10.1137/s1052623494279110
- Guo, L., Lin, G. H., Ye, J. J., 10.1007/s10957-014-0699-z, J. Optim. Theory Appl. 166 (2015), 234-256. MR3366112DOI10.1007/s10957-014-0699-z
- Golbabai, A., Ezazipour, S., 10.1016/j.eswa.2017.04.016, Expert Systems Appl. 82 (2017), 291-300. DOI10.1016/j.eswa.2017.04.016
- He, X., Li, C., Huang, T., Li, C. H., 10.1016/j.neunet.2013.11.015, Neural Networks 51 (2014), 17-25. DOI10.1016/j.neunet.2013.11.015
- Hopfiel, J. J., Tank, D. W., 10.1016/0096-3003(85)90004-9, Biol. Cybernet. 52 (1985), 141-152. MR0824597DOI10.1016/0096-3003(85)90004-9
- Hosseini, A., Hosseini, S. M., 10.1007/s10957-012-0258-4, J. Optim. Theory Appl. 159 (2013), 698-720. MR3124992DOI10.1007/s10957-012-0258-4
- Hosseinipour-Mahani, N., Malek, A., 10.1016/j.matcom.2015.09.013, Math. Comput. Simul. 122 (2016), 20-34. MR3436939DOI10.1016/j.matcom.2015.09.013
- Hosseinipour-Mahani, N., Malek, A., 10.14736/kyb-2015-5-0890, Kybernetika 51 (2015), 890-908. MR3445990DOI10.14736/kyb-2015-5-0890
- Huang, X. X., Yang, X. Q., Teo, K. L., 10.1007/s10898-005-3837-1, Global Optim. 35 (2006), 235-254. MR2242014DOI10.1007/s10898-005-3837-1
- Jane, J. Y., 10.1016/j.jmaa.2004.10.032, Math. Anal. Appl. 307 (2005), 350-369. MR2138995DOI10.1016/j.jmaa.2004.10.032
- Kočvara, M., Outrata, J., 10.1007/s10107-004-0539-2, Math. Program. 101 (2004), 119-149. MR2085261DOI10.1007/s10107-004-0539-2
- Kanzow, C., Schwartz, A., 10.1137/100802487, SIAM J. Optim. 23 (2013), 770-798. Zbl1282.65069MR3045664DOI10.1137/100802487
- Luenberger, D. G., Ye, Y., 10.1007/978-0-387-74503-9, Springer Science and Business Media, 233 Spring Street, New York 2008. MR2423726DOI10.1007/978-0-387-74503-9
- Luo, Z. Q., Pang, J. S., Ralph, D., 10.1017/cbo9780511983658, Cambridge University Press, Cambridge 1996. Zbl1139.90003MR1419501DOI10.1017/cbo9780511983658
- Lan, K. M., Wen, U. P., Shih, H. S., Lee, E. S., 10.1016/j.aml.2006.07.013, Appl. Math. Lett. 20 (2007), 880-884. MR2323126DOI10.1016/j.aml.2006.07.013
- Li, J., Li, C., Wu, Z., Huang, J., 10.1007/s00521-013-1530-8, Neural Comput. Appl. 25 (2014), 603-611. DOI10.1007/s00521-013-1530-8
- Liu, Q., Wang, J., 10.1109/tnnls.2013.2244908, IEEE Trans. Neural Networks Learning Systems 24 (2013), 812-824. MR3453221DOI10.1109/tnnls.2013.2244908
- Lv, Y., Chen, Z., Wan, Z., 10.1016/j.eswa.2010.06.050, Expert System Appl. 38 (2011), 231-234. MR2557563DOI10.1016/j.eswa.2010.06.050
- Leyffer, S., 10.1007/0-387-34221-4_9, In: Optimization with Multivalued Mappings (S. Dempe and V. Kalashnikov, eds.), Springer Optimization and Its Applications, vol 2. Springer, Boston 2006. MR2243542DOI10.1007/0-387-34221-4_9
- Liao, L. Z., Qi, H., Qi, L., 10.1016/s0377-0427(00)00262-4, J. Comput. Appl. Math. 131 (2001), 343-359. MR1835721DOI10.1016/s0377-0427(00)00262-4
- Lillo, E. W., Loh, M. H., Hui, S., Zak, H. S., 10.1109/72.286888, IEEE Trans. Neural Networks 4 (1993), 931-940. DOI10.1109/72.286888
- Lin, G. H., Fukushima, M., 10.1023/a:1024739508603, J. Optim. Theory Appl. 118 (2003), 81-116. MR1995697DOI10.1023/a:1024739508603
- Malek, A., Ezazipour, S., Hosseinipour-Mahani, N., Projected dynamical systems and optimization problems., Bull. Iranian Math. Soc. 37 (2011), 81-96. Zbl1253.37091MR2890580
- Malek, A., Ezazipour, S., Hosseinipour-Mahani, N., Double projection neural network for solving pseudomonotone variational inequalities., Fixed Point Theory 12 (2011), 401-418. MR2895702
- Malek, A., Hosseinipour-Mahani, N., Ezazipour, S., 10.1080/10556780902856743, Optim. Methods Software 25 (2010), 489-506. Zbl1225.90129MR2724153DOI10.1080/10556780902856743
- Morrison, D. D., 10.1137/0705006, SIAM J. Numer. Anal. 5 (1968), 83-88. MR0226828DOI10.1137/0705006
- Miller, R. K., Michel, A. N., Ordinary Differential Equations., Academic Press, New York 1982. Zbl0552.34001MR0660250
- Outrata, J. V., Kočvara, M., Zowe, J., 10.1007/978-1-4757-2825-5, Kluwer Academic Publishers, Dordrecht 1998. MR1641213DOI10.1007/978-1-4757-2825-5
- Outrata, J. V., 10.1137/0804019, SIAM J. Optim. 4 (1994), 340-357. MR1273763DOI10.1137/0804019
- Ranjbar, M., Effati, S., Miri, S. M., 10.1016/j.neucom.2016.12.064, Neurocomputing 235 (2017), 192-198. DOI10.1016/j.neucom.2016.12.064
- Sheng, Z., Lv, Z., Xu, Z., A new algorithm based on the Frank-Wolfe method and neural network for a class of bilevel decision making problem., Acta Automat. Sinica 22 (1996), 657-665.
- Scholtes, S., Stohr, M., 10.1137/s0363012996306121, SIAM J. Control Optim. 37 (1999), 617-652. MR1670641DOI10.1137/s0363012996306121
- Tank, D. W., Hopfield, J. J., 10.1109/tcs.1986.1085953, IEEE Trans. Circuits Syst. 33 (1986), 533-541. DOI10.1109/tcs.1986.1085953
- Yang, Q. X., Huang, X. X., 10.1080/1055678041001697659, Optim. Methods Software 19 (2004), 693-720. MR2102222DOI10.1080/1055678041001697659
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.