A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints

Soraya Ezazipour; Ahmad Golbabai

Kybernetika (2020)

  • Volume: 56, Issue: 3, page 383-409
  • ISSN: 0023-5954

Abstract

top
This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems.

How to cite

top

Ezazipour, Soraya, and Golbabai, Ahmad. "A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints." Kybernetika 56.3 (2020): 383-409. <http://eudml.org/doc/297375>.

@article{Ezazipour2020,
abstract = {This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems.},
author = {Ezazipour, Soraya, Golbabai, Ahmad},
journal = {Kybernetika},
keywords = {neural network; mathematical programming with equilibrium constraints; asymptotically stability; globally convergence},
language = {eng},
number = {3},
pages = {383-409},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints},
url = {http://eudml.org/doc/297375},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Ezazipour, Soraya
AU - Golbabai, Ahmad
TI - A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 383
EP - 409
AB - This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems.
LA - eng
KW - neural network; mathematical programming with equilibrium constraints; asymptotically stability; globally convergence
UR - http://eudml.org/doc/297375
ER -

References

top
  1. Andreani, R., Martínez, J. M., 10.1007/s001860100158, Math. Methods Oper. Res. 54 (2001), 345-359. MR1890905DOI10.1007/s001860100158
  2. Aiyoshi, E., Shimizu, K., 10.1109/tsmc.1981.4308712, IEEE Trans. Systems Man Cybernet. 11 (1981), 444-449. MR0631815DOI10.1109/tsmc.1981.4308712
  3. Bard, J. F., 10.1109/tsmc.1981.4308712, Math. Program. 40 (1988), 15-27. MR0923693DOI10.1109/tsmc.1981.4308712
  4. Chen, J. S., 10.1142/s0217595907001292, Asia-Pacific J. Oper. Res. 24 (2007), 401-420. MR2335554DOI10.1142/s0217595907001292
  5. Facchinei, F., Jiang, H., Qi, L., 10.1007/s10107990015a, Math. Program. 85 (1999), 107-134. Zbl0959.65079MR1689366DOI10.1007/s10107990015a
  6. Ferris, M. C., Dirkse, S. P., Meeraus, A., 10.1017/cbo9780511614330.005, Frontiers in Applied General Equilibrium Modeling, Cambridge University Press 2002, pp. 67-94. DOI10.1017/cbo9780511614330.005
  7. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S., 10.1137/s1052623402407382, SIAM J. Optim. 17 (2006), 259-286. Zbl1112.90098MR2219153DOI10.1137/s1052623402407382
  8. Facchinei, F., Soares, J., 10.1137/s1052623494279110, SIAM J. Optim. 7 (1997), 225-247. MR1430565DOI10.1137/s1052623494279110
  9. Guo, L., Lin, G. H., Ye, J. J., 10.1007/s10957-014-0699-z, J. Optim. Theory Appl. 166 (2015), 234-256. MR3366112DOI10.1007/s10957-014-0699-z
  10. Golbabai, A., Ezazipour, S., 10.1016/j.eswa.2017.04.016, Expert Systems Appl. 82 (2017), 291-300. DOI10.1016/j.eswa.2017.04.016
  11. He, X., Li, C., Huang, T., Li, C. H., 10.1016/j.neunet.2013.11.015, Neural Networks 51 (2014), 17-25. DOI10.1016/j.neunet.2013.11.015
  12. Hopfiel, J. J., Tank, D. W., 10.1016/0096-3003(85)90004-9, Biol. Cybernet. 52 (1985), 141-152. MR0824597DOI10.1016/0096-3003(85)90004-9
  13. Hosseini, A., Hosseini, S. M., 10.1007/s10957-012-0258-4, J. Optim. Theory Appl. 159 (2013), 698-720. MR3124992DOI10.1007/s10957-012-0258-4
  14. Hosseinipour-Mahani, N., Malek, A., 10.1016/j.matcom.2015.09.013, Math. Comput. Simul. 122 (2016), 20-34. MR3436939DOI10.1016/j.matcom.2015.09.013
  15. Hosseinipour-Mahani, N., Malek, A., 10.14736/kyb-2015-5-0890, Kybernetika 51 (2015), 890-908. MR3445990DOI10.14736/kyb-2015-5-0890
  16. Huang, X. X., Yang, X. Q., Teo, K. L., 10.1007/s10898-005-3837-1, Global Optim. 35 (2006), 235-254. MR2242014DOI10.1007/s10898-005-3837-1
  17. Jane, J. Y., 10.1016/j.jmaa.2004.10.032, Math. Anal. Appl. 307 (2005), 350-369. MR2138995DOI10.1016/j.jmaa.2004.10.032
  18. Kočvara, M., Outrata, J., 10.1007/s10107-004-0539-2, Math. Program. 101 (2004), 119-149. MR2085261DOI10.1007/s10107-004-0539-2
  19. Kanzow, C., Schwartz, A., 10.1137/100802487, SIAM J. Optim. 23 (2013), 770-798. Zbl1282.65069MR3045664DOI10.1137/100802487
  20. Luenberger, D. G., Ye, Y., 10.1007/978-0-387-74503-9, Springer Science and Business Media, 233 Spring Street, New York 2008. MR2423726DOI10.1007/978-0-387-74503-9
  21. Luo, Z. Q., Pang, J. S., Ralph, D., 10.1017/cbo9780511983658, Cambridge University Press, Cambridge 1996. Zbl1139.90003MR1419501DOI10.1017/cbo9780511983658
  22. Lan, K. M., Wen, U. P., Shih, H. S., Lee, E. S., 10.1016/j.aml.2006.07.013, Appl. Math. Lett. 20 (2007), 880-884. MR2323126DOI10.1016/j.aml.2006.07.013
  23. Li, J., Li, C., Wu, Z., Huang, J., 10.1007/s00521-013-1530-8, Neural Comput. Appl. 25 (2014), 603-611. DOI10.1007/s00521-013-1530-8
  24. Liu, Q., Wang, J., 10.1109/tnnls.2013.2244908, IEEE Trans. Neural Networks Learning Systems 24 (2013), 812-824. MR3453221DOI10.1109/tnnls.2013.2244908
  25. Lv, Y., Chen, Z., Wan, Z., 10.1016/j.eswa.2010.06.050, Expert System Appl. 38 (2011), 231-234. MR2557563DOI10.1016/j.eswa.2010.06.050
  26. Leyffer, S., 10.1007/0-387-34221-4_9, In: Optimization with Multivalued Mappings (S. Dempe and V. Kalashnikov, eds.), Springer Optimization and Its Applications, vol 2. Springer, Boston 2006. MR2243542DOI10.1007/0-387-34221-4_9
  27. Liao, L. Z., Qi, H., Qi, L., 10.1016/s0377-0427(00)00262-4, J. Comput. Appl. Math. 131 (2001), 343-359. MR1835721DOI10.1016/s0377-0427(00)00262-4
  28. Lillo, E. W., Loh, M. H., Hui, S., Zak, H. S., 10.1109/72.286888, IEEE Trans. Neural Networks 4 (1993), 931-940. DOI10.1109/72.286888
  29. Lin, G. H., Fukushima, M., 10.1023/a:1024739508603, J. Optim. Theory Appl. 118 (2003), 81-116. MR1995697DOI10.1023/a:1024739508603
  30. Malek, A., Ezazipour, S., Hosseinipour-Mahani, N., Projected dynamical systems and optimization problems., Bull. Iranian Math. Soc. 37 (2011), 81-96. Zbl1253.37091MR2890580
  31. Malek, A., Ezazipour, S., Hosseinipour-Mahani, N., Double projection neural network for solving pseudomonotone variational inequalities., Fixed Point Theory 12 (2011), 401-418. MR2895702
  32. Malek, A., Hosseinipour-Mahani, N., Ezazipour, S., 10.1080/10556780902856743, Optim. Methods Software 25 (2010), 489-506. Zbl1225.90129MR2724153DOI10.1080/10556780902856743
  33. Morrison, D. D., 10.1137/0705006, SIAM J. Numer. Anal. 5 (1968), 83-88. MR0226828DOI10.1137/0705006
  34. Miller, R. K., Michel, A. N., Ordinary Differential Equations., Academic Press, New York 1982. Zbl0552.34001MR0660250
  35. Outrata, J. V., Kočvara, M., Zowe, J., 10.1007/978-1-4757-2825-5, Kluwer Academic Publishers, Dordrecht 1998. MR1641213DOI10.1007/978-1-4757-2825-5
  36. Outrata, J. V., 10.1137/0804019, SIAM J. Optim. 4 (1994), 340-357. MR1273763DOI10.1137/0804019
  37. Ranjbar, M., Effati, S., Miri, S. M., 10.1016/j.neucom.2016.12.064, Neurocomputing 235 (2017), 192-198. DOI10.1016/j.neucom.2016.12.064
  38. Sheng, Z., Lv, Z., Xu, Z., A new algorithm based on the Frank-Wolfe method and neural network for a class of bilevel decision making problem., Acta Automat. Sinica 22 (1996), 657-665. 
  39. Scholtes, S., Stohr, M., 10.1137/s0363012996306121, SIAM J. Control Optim. 37 (1999), 617-652. MR1670641DOI10.1137/s0363012996306121
  40. Tank, D. W., Hopfield, J. J., 10.1109/tcs.1986.1085953, IEEE Trans. Circuits Syst. 33 (1986), 533-541. DOI10.1109/tcs.1986.1085953
  41. Yang, Q. X., Huang, X. X., 10.1080/1055678041001697659, Optim. Methods Software 19 (2004), 693-720. MR2102222DOI10.1080/1055678041001697659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.