An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel

Gupta Nupur; Nataraj Neela

ESAIM: Mathematical Modelling and Numerical Analysis (2011)

  • Volume: 45, Issue: 6, page 1081-1113
  • ISSN: 0764-583X

Abstract

top
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin method. A priori error estimates are developed at different discretization levels. Numerical experiments presented justify the theoretical order of convergence obtained.

How to cite

top

Nupur, Gupta, and Neela, Nataraj. "An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel." ESAIM: Mathematical Modelling and Numerical Analysis 45.6 (2011): 1081-1113. <http://eudml.org/doc/276342>.

@article{Nupur2011,
abstract = { In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin method. A priori error estimates are developed at different discretization levels. Numerical experiments presented justify the theoretical order of convergence obtained. },
author = {Nupur, Gupta, Neela, Nataraj},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Laser surface hardening of steel; semi-linear parabolic equation; optimal control; error estimates; discontinuous Galerkin finite element method; laser surface hardening of steel; semi-linear parabolic equation; discontinuous Galerkin finite element method; numerical experiments},
language = {eng},
month = {6},
number = {6},
pages = {1081-1113},
publisher = {EDP Sciences},
title = {An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel},
url = {http://eudml.org/doc/276342},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Nupur, Gupta
AU - Neela, Nataraj
TI - An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/6//
PB - EDP Sciences
VL - 45
IS - 6
SP - 1081
EP - 1113
AB - In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin method. A priori error estimates are developed at different discretization levels. Numerical experiments presented justify the theoretical order of convergence obtained.
LA - eng
KW - Laser surface hardening of steel; semi-linear parabolic equation; optimal control; error estimates; discontinuous Galerkin finite element method; laser surface hardening of steel; semi-linear parabolic equation; discontinuous Galerkin finite element method; numerical experiments
UR - http://eudml.org/doc/276342
ER -

References

top
  1. V. Arnăutu, D. Hömberg and J. Sokołowski, Convergence results for a nonlinear parabolic control problem. Numer. Funct. Anal. Optim.20 (1999) 805–824.  
  2. D.N. Arnold, An interior penalty method for discontinuous elements. SIAM J. Numer. Anal.19 (1982) 742–760.  
  3. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal.39 (2002) 1749–1779.  
  4. I. Babuška, The finite element method with penalty. Math. Comput.27 (1973) 221–228.  
  5. C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world. Preprint of the Laboratoire Jacques-Louis LionsR03038 (2003).  
  6. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).  
  7. M. Crouzeix, V. Thomee, L.B. Wahlbin, Error estimates for spatial discrete approximation of semilinear parabolic equation with initial data of low regularity. Math. Comput.53 187 (1989) 25–41.  
  8. J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences, Lecture Notes in Phys.58. Springer-Verlag, Berlin (1976).  
  9. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal.28 (1991) 43–77.  
  10. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems II: optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal.32 (1995) 706–740.  
  11. L.C. Evans, Partial Differential Equations. American Mathematics Society, Providence, Rhode Island (1998).  
  12. T. Gudi, N. Nataraj and A.K. Pani, Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal.45 (2007) 163–192.  
  13. T. Gudi, N. Nataraj and A.K. Pani, hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math.109 (2008) 233–268.  
  14. T. Gudi, N. Nataraj and A.K. Pani, An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type. Math. Comput.77 (2008) 731–756.  
  15. N. Gupta, N. Nataraj and A.K. Pani, An optimal control problem of laser surface hardening of steel. Int. J. Numer. Anal. Model.7 (2010).  
  16. N. Gupta, N. Nataraj and A.K. Pani, A priori error estimates for the optimal control of laser surface hardening of steel. Paper communicated.  
  17. D. Hömberg, A mathematical model for the phase transitions in eutectoid carbon steel. IMA J. Appl. Math.54 (1995) 31–57.  
  18. D. Hömberg, Irreversible phase transitions in steel. Math. Methods Appl. Sci.20 (1997) 59–77.  
  19. D. Hömberg and J. Fuhrmann, Numerical simulation of surface hardening of steel. Int. J. Numer. Meth. Heat Fluid Flow9 (1999) 705–724.  
  20. D. Hömberg and J. Sokolowski, Optimal control of laser hardening. Adv. Math. Sci.8 (1998) 911–928.  
  21. D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model.37 (2003) 1003–1028.  
  22. D. Hömberg and W. Weiss, PID-control of laser surface hardening of steel. IEEE Trans. Control Syst. Technol.14 (2006) 896–904.  
  23. P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal.39 (2002) 2133–2163.  
  24. A. Lasis and E. Süli, hp-version discontinuous Galerkin finite element methods for semilinear parabolic problems. Report No. 03/11, Oxford university computing laboratory (2003).  
  25. A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces. Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD (2003).  
  26. J.B. Leblond and J. Devaux, A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall.32 (1984) 137–146.  
  27. V.I. Mazhukin and A.A. Samarskii, Mathematical modelling in the technology of laser treatments of materials. Surveys Math. Indust.4 (1994) 85-149.  
  28. D. Meidner, and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim.47 (2007) 1150–1177.  
  29. J.A. Nitsche, Über ein Variationprinzip zur Lösung Dirichlet-Problemen bei Verwen-dung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15.  
  30. J.T. Oden, I. Babuška and C.E. Baumann, A discontinuous hp finite element method for diffusion problems. J. Comput. Phys.146 (1998) 491–519.  
  31. S. Prudhomme, F. Pascal and J.T. Oden, Review of error estimation for discontinuous Galerkin method. TICAM-report 00-27 (2000).  
  32. B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. Frontiers in Mathematics35. SIAM 2008. ISBN: 978-0-898716-56-6.  
  33. B. Rivière and M.F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations. The Center for Substance Modeling, TICAM, The University of Texas, Austin TX 78712, USA.  
  34. B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal.39 (2001) 902–931.  
  35. V. Thomée, Galerkin finite element methods for parabolic problems. Springer (1997).  
  36. S. Volkwein, Non-linear conjugate gradient method for the optimal control of laser surface hardening, Optim. Methods Softw.19 (2004) 179–199.  
  37. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal.15 (1978) 152–161.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.