Displaying similar documents to “An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel”

An -Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel

Gupta Nupur, Nataraj Neela (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we discuss an -discontinuous Galerkin finite element method (-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an -DGFEM, time and control discretizations are based on...

New regularity results and improved error estimates for optimal control problems with state constraints

Eduardo Casas, Mariano Mateos, Boris Vexler (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order...

Robust operator estimates and the application to substructuring methods for first-order systems

Christian Wieners, Barbara Wohlmuth (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We discuss a family of discontinuous Petrov–Galerkin (DPG) schemes for quite general partial differential operators. The starting point of our analysis is the DPG method introduced by [Demkowicz , 49 (2011) 1788–1809; Zitelli , 230 (2011) 2406–2432]. This discretization results in a sparse positive definite linear algebraic system which can be obtained from a saddle point problem by an element-wise Schur complement reduction applied to the test space. Here, we show that the abstract...

Optimal convergence rates of mortar finite element methods for second-order elliptic problems

Faker Ben Belgacem, Padmanabhan Seshaiyer, Manil Suri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present an improved, near-optimal error estimate for a non-conforming finite element method, called the mortar method (M0). We also present a new mortaring technique, called the mortar method (MP), and derive , and error estimates for it, in the presence of quasiuniform and non-quasiuniform meshes. Our theoretical results, augmented by the computational evidence we present, show that like (M0), (MP) is also a viable mortaring technique for the method.

A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are () (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space spanned by...

Optimal convergence of a discontinuous-Galerkin-based immersed boundary method

Adrian J. Lew, Matteo Negri (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...

Optimal convergence of a discontinuous-Galerkin-based immersed boundary method

Adrian J. Lew, Matteo Negri (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...