Phase field method for mean curvature flow with boundary constraints

Elie Bretin; Valerie Perrier

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

  • Volume: 46, Issue: 6, page 1509-1526
  • ISSN: 0764-583X

Abstract

top
This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.

How to cite

top

Bretin, Elie, and Perrier, Valerie. "Phase field method for mean curvature flow with boundary constraints." ESAIM: Mathematical Modelling and Numerical Analysis 46.6 (2012): 1509-1526. <http://eudml.org/doc/276375>.

@article{Bretin2012,
abstract = {This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.},
author = {Bretin, Elie, Perrier, Valerie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Allen Cahn equation; mean curvature flow; boundary constraints; penalization technique; gamma-convergence; Fourier splitting method; numerical tests; convergence},
language = {eng},
month = {6},
number = {6},
pages = {1509-1526},
publisher = {EDP Sciences},
title = {Phase field method for mean curvature flow with boundary constraints},
url = {http://eudml.org/doc/276375},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Bretin, Elie
AU - Perrier, Valerie
TI - Phase field method for mean curvature flow with boundary constraints
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/6//
PB - EDP Sciences
VL - 46
IS - 6
SP - 1509
EP - 1526
AB - This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.
LA - eng
KW - Allen Cahn equation; mean curvature flow; boundary constraints; penalization technique; gamma-convergence; Fourier splitting method; numerical tests; convergence
UR - http://eudml.org/doc/276375
ER -

References

top
  1. G. Alberti, Variational models for phase transitions, an approach viaγ-convergence, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 95–114.  
  2. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall.27 (1979) 1085–1095.  
  3. L. Almeida, A. Chambolle and M. Novaga, Mean curvature flow with obstacle. Technical Report Preprint (2011).  Zbl1252.49072
  4. L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 5–93.  Zbl0956.35002
  5. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, in Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Paris 17 (1994).  Zbl0819.35002
  6. J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in r3. J. Comput. Phys.227 (2008) 4281–4307.  Zbl1145.65068
  7. J.W. Barrett, H. Garcke and R. Nürnberg, A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math.109 (2008) 1–44.  Zbl1149.65082
  8. P.W. Bates, S. Brown and J.L. Han, Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model.6 (2009) 33–49.  Zbl1165.65051
  9. G. Bellettini, Variational approximation of functionals with curvatures and related properties. J. Convex Anal.4 (1997) 91–108.  Zbl0882.49013
  10. G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term. Differ. Integral Equ.8 (1995) 735–752.  Zbl0820.49019
  11. G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J.25 (1996) 537–566.  Zbl0873.53011
  12. B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM : COCV9 (2003) 19–48.  Zbl1066.49029
  13. M. Brassel, Instabilité de Forme en Croissance Cristalline. Ph.D. thesis, University Joseph Fourier, Grenoble (2008).  
  14. M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci.34 (2011) 1157–1180.  Zbl1235.49082
  15. E. Bretin, Méthode de champ de phase et mouvement par courbure moyenne. Ph.D. thesis, Institut National Polytechnique de Grenoble (2009).  
  16. A. Bueno-Orovio, V.M. Pérez-García and F.H. Fenton, Spectral methods for partial differential equations in irregular domains : The spectral smoothed boundary method. SIAM J. Sci. Comput.28 (2006) 886–900.  Zbl1114.65119
  17. X. Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ.96 (1992) 116–141.  Zbl0765.35024
  18. L.Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun.108 (1998) 147–158.  Zbl1017.65533
  19. Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Proc. Jpn Acad. Ser. A65 (1989) 207–210.  Zbl0735.35082
  20. X.F. Chen, C.M. Elliott, A. Gardiner and J.J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation. Appl. Anal.69 (1998) 47–56.  Zbl0992.65096
  21. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull Amer. Math. Soc.27 (1992) 1–68.  
  22. K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs. ESAIM : M2AN33 (1999) 1203–1222.  Zbl0948.65138
  23. K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer.14 (2005) 139–232.  Zbl1113.65097
  24. L.C. Evans and J. Spruck, Motion of level sets by mean curvature I. J. Differ. Geom.33 (1991) 635–681.  Zbl0726.53029
  25. L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math.45 (1992) 1097–1123.  Zbl0801.35045
  26. X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math.94 (2003) 33–65.  Zbl1029.65093
  27. X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput.73 (2004) 541–567.  Zbl1115.76049
  28. X. Feng and H.-J. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow. J. Sci. Comput.24 (2005) 121–146.  Zbl1096.76025
  29. Y. Li, H.G. Lee, D. Jeong and J. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl.60 (2010) 1591–1606.  Zbl1202.65112
  30. L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A14 (1977) 526–529.  Zbl0364.49006
  31. L. Modica and S. Mortola, Un esempio di Γ − -convergenza. Boll. Un. Mat. Ital. B14 (1977) 285–299.  
  32. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York. Appl. Math. Sci. (2002).  Zbl1026.76001
  33. S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, New York (2003).  Zbl1027.68137
  34. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed : algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.79 (1988) 12–49.  Zbl0659.65132
  35. N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a dirichlet condition. Proc. R. Soc. London429 (1990) 505–532.  Zbl0722.49021
  36. M. Paolini, An efficient algorithm for computing anisotropic evolution by mean curvature, in Curvature flows and related topics, edited by Levico, 1994. Gakuto Int. Ser. Math. Sci. Appl.5 (1995) 199–213.  Zbl0838.73079
  37. M. Röger and R. Schätzle, On a modified conjecture of De Giorgi. Math. Z.254 (2006) 675–714.  Zbl1126.49010
  38. R. Schätzle, Lower semicontinuity of the Willmore functional for currents. J. Differ. Geom.81 (2009) 437–456.  Zbl1214.53011
  39. R. Schätzle, The Willmore boundary problem. Calc. Var. Partial Differ. Equ.37 (2010) 275–302.  Zbl1188.53006
  40. S. Serfaty, Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Disc. Cont. Dyn. Systems31 (2011) 1427–1451.  Zbl1239.35015
  41. H.-C.Y. Yu, H.-Y. Chen and K. Thornton, Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Technical Report, arXiv:1107.5341v1 (2011). Submitted.  
  42. J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit. SIAM J. Sci. Comput.31 (2009) 3042–3063.  Zbl1198.82045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.