Phase field method for mean curvature flow with boundary constraints

Elie Bretin; Valerie Perrier

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

  • Volume: 46, Issue: 6, page 1509-1526
  • ISSN: 0764-583X

Abstract

top
This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.

How to cite

top

Bretin, Elie, and Perrier, Valerie. "Phase field method for mean curvature flow with boundary constraints." ESAIM: Mathematical Modelling and Numerical Analysis 46.6 (2012): 1509-1526. <http://eudml.org/doc/276375>.

@article{Bretin2012,
abstract = {This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.},
author = {Bretin, Elie, Perrier, Valerie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Allen Cahn equation; mean curvature flow; boundary constraints; penalization technique; gamma-convergence; Fourier splitting method; numerical tests; convergence},
language = {eng},
month = {6},
number = {6},
pages = {1509-1526},
publisher = {EDP Sciences},
title = {Phase field method for mean curvature flow with boundary constraints},
url = {http://eudml.org/doc/276375},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Bretin, Elie
AU - Perrier, Valerie
TI - Phase field method for mean curvature flow with boundary constraints
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/6//
PB - EDP Sciences
VL - 46
IS - 6
SP - 1509
EP - 1526
AB - This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.
LA - eng
KW - Allen Cahn equation; mean curvature flow; boundary constraints; penalization technique; gamma-convergence; Fourier splitting method; numerical tests; convergence
UR - http://eudml.org/doc/276375
ER -

References

top
  1. G. Alberti, Variational models for phase transitions, an approach viaγ-convergence, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 95–114.  
  2. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall.27 (1979) 1085–1095.  
  3. L. Almeida, A. Chambolle and M. Novaga, Mean curvature flow with obstacle. Technical Report Preprint (2011).  
  4. L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 5–93.  
  5. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, in Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Paris 17 (1994).  
  6. J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in r3. J. Comput. Phys.227 (2008) 4281–4307.  
  7. J.W. Barrett, H. Garcke and R. Nürnberg, A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math.109 (2008) 1–44.  
  8. P.W. Bates, S. Brown and J.L. Han, Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model.6 (2009) 33–49.  
  9. G. Bellettini, Variational approximation of functionals with curvatures and related properties. J. Convex Anal.4 (1997) 91–108.  
  10. G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term. Differ. Integral Equ.8 (1995) 735–752.  
  11. G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J.25 (1996) 537–566.  
  12. B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM : COCV9 (2003) 19–48.  
  13. M. Brassel, Instabilité de Forme en Croissance Cristalline. Ph.D. thesis, University Joseph Fourier, Grenoble (2008).  
  14. M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci.34 (2011) 1157–1180.  
  15. E. Bretin, Méthode de champ de phase et mouvement par courbure moyenne. Ph.D. thesis, Institut National Polytechnique de Grenoble (2009).  
  16. A. Bueno-Orovio, V.M. Pérez-García and F.H. Fenton, Spectral methods for partial differential equations in irregular domains : The spectral smoothed boundary method. SIAM J. Sci. Comput.28 (2006) 886–900.  
  17. X. Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ.96 (1992) 116–141.  
  18. L.Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun.108 (1998) 147–158.  
  19. Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Proc. Jpn Acad. Ser. A65 (1989) 207–210.  
  20. X.F. Chen, C.M. Elliott, A. Gardiner and J.J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation. Appl. Anal.69 (1998) 47–56.  
  21. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull Amer. Math. Soc.27 (1992) 1–68.  
  22. K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs. ESAIM : M2AN33 (1999) 1203–1222.  
  23. K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer.14 (2005) 139–232.  
  24. L.C. Evans and J. Spruck, Motion of level sets by mean curvature I. J. Differ. Geom.33 (1991) 635–681.  
  25. L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math.45 (1992) 1097–1123.  
  26. X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math.94 (2003) 33–65.  
  27. X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput.73 (2004) 541–567.  
  28. X. Feng and H.-J. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow. J. Sci. Comput.24 (2005) 121–146.  
  29. Y. Li, H.G. Lee, D. Jeong and J. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl.60 (2010) 1591–1606.  
  30. L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A14 (1977) 526–529.  
  31. L. Modica and S. Mortola, Un esempio di Γ − -convergenza. Boll. Un. Mat. Ital. B14 (1977) 285–299.  
  32. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York. Appl. Math. Sci. (2002).  
  33. S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, New York (2003).  
  34. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed : algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.79 (1988) 12–49.  
  35. N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a dirichlet condition. Proc. R. Soc. London429 (1990) 505–532.  
  36. M. Paolini, An efficient algorithm for computing anisotropic evolution by mean curvature, in Curvature flows and related topics, edited by Levico, 1994. Gakuto Int. Ser. Math. Sci. Appl.5 (1995) 199–213.  
  37. M. Röger and R. Schätzle, On a modified conjecture of De Giorgi. Math. Z.254 (2006) 675–714.  
  38. R. Schätzle, Lower semicontinuity of the Willmore functional for currents. J. Differ. Geom.81 (2009) 437–456.  
  39. R. Schätzle, The Willmore boundary problem. Calc. Var. Partial Differ. Equ.37 (2010) 275–302.  
  40. S. Serfaty, Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Disc. Cont. Dyn. Systems31 (2011) 1427–1451.  
  41. H.-C.Y. Yu, H.-Y. Chen and K. Thornton, Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Technical Report, arXiv:1107.5341v1 (2011). Submitted.  
  42. J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit. SIAM J. Sci. Comput.31 (2009) 3042–3063.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.