Instrumental weighted variables under heteroscedasticity. Part I – Consistency
Kybernetika (2017)
- Volume: 53, Issue: 1, page 1-25
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVíšek, Jan Ámos. "Instrumental weighted variables under heteroscedasticity. Part I – Consistency." Kybernetika 53.1 (2017): 1-25. <http://eudml.org/doc/287938>.
@article{Víšek2017,
abstract = {The proof of consistency instrumental weighted variables, the robust version of the classical instrumental variables is given. It is proved that all solutions of the corresponding normal equations are contained, with high probability, in a ball, the radius of which can be selected - asymptotically - arbitrarily small. Then also $\sqrt\{n\}$-consistency is proved. An extended numerical study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples under various types and levels of contamination as well as various extent of heteroscedasticity. The estimator in question is compared with two other estimators of the type of “robust instrumental variables” and the results indicate that our estimator gives comparatively good results and for some situations it is better. The discussion on a way of selecting the weights is also offered. The conclusions show the resemblance of our estimator with the $M$-estimator with Hampel’s $\psi $-function. The difference is that our estimator does not need the studentization of residuals (which is not a simple task) to be scale- and regression-equivariant while the $M$-estimator does. So the paper demonstrates that we can directly compute - moreover by a quick algorithm (reliable and reasonably quick even for tens of thousands of observations) - the scale- and the regression-equivariant estimate of regression coefficients.},
author = {Víšek, Jan Ámos},
journal = {Kybernetika},
keywords = {weighting order statistics of the squared residuals; consistency of the instrumental weighted variables; heteroscedasticity of disturbances; numerical study},
language = {eng},
number = {1},
pages = {1-25},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Instrumental weighted variables under heteroscedasticity. Part I – Consistency},
url = {http://eudml.org/doc/287938},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Víšek, Jan Ámos
TI - Instrumental weighted variables under heteroscedasticity. Part I – Consistency
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 1
SP - 1
EP - 25
AB - The proof of consistency instrumental weighted variables, the robust version of the classical instrumental variables is given. It is proved that all solutions of the corresponding normal equations are contained, with high probability, in a ball, the radius of which can be selected - asymptotically - arbitrarily small. Then also $\sqrt{n}$-consistency is proved. An extended numerical study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples under various types and levels of contamination as well as various extent of heteroscedasticity. The estimator in question is compared with two other estimators of the type of “robust instrumental variables” and the results indicate that our estimator gives comparatively good results and for some situations it is better. The discussion on a way of selecting the weights is also offered. The conclusions show the resemblance of our estimator with the $M$-estimator with Hampel’s $\psi $-function. The difference is that our estimator does not need the studentization of residuals (which is not a simple task) to be scale- and regression-equivariant while the $M$-estimator does. So the paper demonstrates that we can directly compute - moreover by a quick algorithm (reliable and reasonably quick even for tens of thousands of observations) - the scale- and the regression-equivariant estimate of regression coefficients.
LA - eng
KW - weighting order statistics of the squared residuals; consistency of the instrumental weighted variables; heteroscedasticity of disturbances; numerical study
UR - http://eudml.org/doc/287938
ER -
References
top- Amemiya, T., 10.2307/1912608, Econometrica 50 (1982), 689-711. MR0662726DOI10.2307/1912608
- Atkinson, A. C., Riani, M., Cerioli, A., 10.1007/978-0-387-21840-3_2, Springer Series in Statistics 2004, 31-88. Zbl1049.62057MR2055967DOI10.1007/978-0-387-21840-3_2
- Beran, R., 10.1214/aos/1176344125, Ann. Statist. 6 (1978), 292-313. Zbl0378.62051MR0518885DOI10.1214/aos/1176344125
- Bowden, R. J., Turkington, D. A., 10.1017/ccol0521262410, Cambridge Univ. Press, Cambridge 1984. Zbl0744.62149MR0798790DOI10.1017/ccol0521262410
- Bramati, C. M., Croux, C., 10.1111/j.1368-423x.2007.00220.x, The Econometr. J. 10 (2077), 521-540. Zbl1126.62014DOI10.1111/j.1368-423x.2007.00220.x
- Breiman, L., Probability., Addison-Wesley Publishing Company, London 1968. Zbl0753.60001MR0229267
- Čížek, P., 10.1016/j.jspi.2015.11.004, J. Statist. Planning Inference 171 (2009), 63-78. Zbl1336.62108MR3458068DOI10.1016/j.jspi.2015.11.004
- Cochrane, D., Orcutt, G. H., 10.1080/01621459.1949.10483290, J. Amer. Statist. Assoc. 44 (1949), 32-61. DOI10.1080/01621459.1949.10483290
- Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H., A New Robust Instrumental Variables Estimator.
- Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H., 10.1111/biom.12043, Biometrics 69 (2013), 641-650. MR3106592DOI10.1111/biom.12043
- Croux, C., Aelst, S. Van, Dehon, C., 10.1007/bf02530499, Ann. Inst. Statist. Math. 55 (2013), 265-285. MR2001864DOI10.1007/bf02530499
- Davies, P. L., 10.1214/aos/1176350505, Ann. Statist. 15 (1987), 1269-1292. MR0902258DOI10.1214/aos/1176350505
- (1952), M. Donsker, 10.1214/aoms/1177729445, Ann. Math. Statist. 23 (1952), 277-281. MR0047288DOI10.1214/aoms/1177729445
- Eicker, F., 10.1214/aoms/1177704156, Ann. Math. Stat. 34 (1963), 447-456. Zbl0111.34003MR0148177DOI10.1214/aoms/1177704156
- Eicker, F., Limit theorems for regression with unequal and dependent errors., In: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability (L. Le Cam and J. Neyman, eds.), University of California Press, Berkeley 1967. MR0214223
- Fabián, Z., 10.1214/aoms/1177704156, Comm. Statist. - Theory and Methods 30 (2001), 537-555. Zbl1009.62534MR1862941DOI10.1214/aoms/1177704156
- Fabián, Z., 10.1080/03610920701648987, Comm. Statist. - Theory and Methods 37 (2008), 159-174. Zbl1318.62009MR2412617DOI10.1080/03610920701648987
- Field, C. A., (1990), E. M. Ronchetti, Small Sample Asymptotics., Institute of Mathematical Statistics Monograph Series, Hayward 1990. MR1088480
- Fisher, R. A., 10.1093/mnras/80.8.758, Monthly Notes Royal Astronomical Society 80 (1920), 758-770. DOI10.1093/mnras/80.8.758
- Fisher, R. A., Statistical Methods for Research Workers. Second edition, (1928). MR0346954
- Galton, F., 10.2307/2841583, J. Anthropol. Inst. 15 (1886), 246-263. DOI10.2307/2841583
- Greene, W. H., Econometric Analysis., Macmillam Press, New York 1993.
- Hájek, J., Šidák, Z., Theory of Rank Test., Academic Press, New York 1967. MR0229351
- Halmos, P. R., 10.1007/978-1-4613-8127-3_2, In: Mathematics Tomorrow (L. Steen, ed.), Springer Verlag, New York 1981, pp. 9-20. MR0618280DOI10.1007/978-1-4613-8127-3_2
- Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A., 10.1002/9781118186435 MR0829458DOI10.1002/9781118186435
- Hansen, L. P., 10.2307/1912775, Econometrica 50 (1982), 1029-1054. Zbl0502.62098MR0666123DOI10.2307/1912775
- Harvey, A. C., 10.2307/1913974, Econometrica 44 (1976), 461-465. Zbl0333.62040MR0411063DOI10.2307/1913974
- Hausman, J., Newey, W., Voutersen, T., Chao, J., Swanson, N., 10.3982/qe89, Quantitative Economics 3 (2012), 211-255. MR2957106DOI10.3982/qe89
- Helland, I. S., Partial Least Squares Regression and Statistical Models., Scand. J. Statist. 17 (1990), 97-114. Zbl0713.62062MR1085924
- Hettmansperger, T. P., Sheather, S. J., 10.2307/2684169, Amer. Statist. 46 (1992), 79-83. MR1165565DOI10.2307/2684169
- Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., Lee, T. C., The Theory and Practice of Econometrics. Second edition., J. Wiley and Sons, New York 1985. MR1007139
- Jurečková, J., Regression quantiles and trimmed least squares estimator under a general design., Kybernetika 20 (1984), 345-357. Zbl0561.62027MR0776325
- Kmenta, J., 10.3998/mpub.15701, Macmillan Publishing Company, New York 1986. Zbl0935.62129DOI10.3998/mpub.15701
- Krasker, W. S., 10.2307/1391499, J. Business Econom. Statist. 4 (1986), 437-444. DOI10.2307/1391499
- Krasker, W. S., Welsch, R. E., 10.2307/1913223, Econometrica 53 (1985), 1475-1488. Zbl0583.62095MR0809921DOI10.2307/1913223
- Krishnakumar, J., Ronchetti, E., 10.1016/s0304-4076(97)80014-0, J. Econometr. 78 (1997), 295-314. Zbl0900.62652MR1453482DOI10.1016/s0304-4076(97)80014-0
- Lopuhaa, H. P., 10.1214/aos/1176347386, Ann. Statist. 17 (1989), 1662-1683. MR1026304DOI10.1214/aos/1176347386
- Maronna, R. A., Morgenthaler, S., 10.1080/03610928608829187, Comm. Statist. - Theory and Methods 15 (1986), 1347-1365. Zbl0639.62023MR0836601DOI10.1080/03610928608829187
- Maronna, R. A., Yohai, V. J., 10.1007/bf00536192, Zeitschrift fűr Wahrscheinlichkeitstheorie und verwandte Gebiete 58 (1981), 7-20. MR0635268DOI10.1007/bf00536192
- Maronna, R. A., Yohai, V. J., 10.1016/s0378-3758(96)00046-8, J. Statist. Planning Inference 57 (1997), 233-244. Zbl0900.62173MR1440237DOI10.1016/s0378-3758(96)00046-8
- Mašíček, L., Optimality of the least weighted squares estimator., Kybernetika 40 (2004), 715-734. Zbl1245.62013MR2120393
- Mizon, G. E., 10.1016/0304-4076(94)01671-l, J. Econometr. 69 (1995), 267-288. Zbl0831.62100MR1354668DOI10.1016/0304-4076(94)01671-l
- Paige, C. C., Strakoš, Z., 10.1007/s002110100314, Numer. Math. 91 (2002), 117-146. Zbl0998.65046MR1896090DOI10.1007/s002110100314
- Phillips, P. C. B., Solo, V., 10.1214/aos/1176348666, Ann. Statist. 20 (1992), 971-1001. Zbl0759.60021MR1165602DOI10.1214/aos/1176348666
- Popper, K. R., The Logic of Scientific Discovery., (Logik der Forscung, Springer, Vienna 1935). Hutchinson and co., New York 1952. Zbl1256.03001MR0107593
- Portnoy, S., 10.1007/978-1-4615-7821-5_13, In: Robust and Nonlinear Time - Series Analysis (J. Franke, W. Ha̋rdle, and D. Martin, eds.), Springer Verlag, New York 1983, pp. 231-246. Zbl0568.62065MR0786311DOI10.1007/978-1-4615-7821-5_13
- Rao, R. C., 10.2307/2283583, J. Amer. Statist. Assoc. 65 (1970), 161-172. MR0286221DOI10.2307/2283583
- Rao, R. C., 10.1002/9780470316436, J. Wiley and Sons, New York 1973. Zbl0256.62002MR0346957DOI10.1002/9780470316436
- Robinson, P. M., 10.2307/1911033, Econometrica 55 (1987), 875-891. Zbl0651.62107MR0906567DOI10.2307/1911033
- Ronchetti, E., Trojani, F., 10.1016/s0304-4076(00)00073-7, J. Econometrics 101 (2001), 37-69. Zbl0996.62026MR1805872DOI10.1016/s0304-4076(00)00073-7
- Rousseeuw, P. J., 10.1080/01621459.1984.10477105, J. Amer. Statist. Assoc. 79 (1984), 871-880. MR0770281DOI10.1080/01621459.1984.10477105
- Rousseeuw, P. J., Leroy, A. M., 10.1002/0471725382, J. Wiley and Sons, New York 1987. Zbl0711.62030MR0914792DOI10.1002/0471725382
- Rousseeuw, P. J., Yohai, V., 10.1007/978-1-4615-7821-5_15, In: Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle, and R. D. Martin, eds.), Lecture Notes in Statistics 26 Springer Verlag, New York 1984, pp. 256-272. MR0786313DOI10.1007/978-1-4615-7821-5_15
- Štěpán, J., Teorie pravděpodobnosti (Probability Theory)., Academia, Praha 1987.
- Huffel, S. Van, 10.1007/978-3-7908-2656-2_44, In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica Verlag/Springer, Heidelberg 2004, pp. 539-555. MR2173049DOI10.1007/978-3-7908-2656-2_44
- Víšek, J. Á., A cautionary note on the method of Least Median of Squares reconsidered., In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (P. Lachout, ed.), Academy of Sciences of the Czech Republic, Praha 1994, pp. 254-259.
- Víšek, J. Á., Robust instruments., In: Robust'98 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 1998, pp. 195-224.
- Víšek, J. Á., The robust regression and the experiences from its application on estimation of parameters in a dual economy., In: Proc. Conference Macromodels'99, Wroclaw University 1999, pp. 424-445.
- Víšek, J. Á., Regression with high breakdown point., In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 2000, pp. 324-356.
- Víšek, J. Á., The least weighted squares I. The asymptotic linearity of normal equations., Bull. Czech Econometr. Soc. 9 (2002), 31-58.
- Víšek, J. Á., The least weighted squares II. Consistency and asymptotic normality., Bull. Czech Econometr. Soc. 9 (2002), 1-28. MR2208518
- Víšek, J. Á., Development of the Czech export in nineties., In: Konsolidace vládnutí a podnikání v České republice a v Evropské unii I. Umění vládnout, ekonomika, politika, Matfyzpress, Praha 2003, pp. 193-220.
- Víšek, J. Á., 10.1007/978-3-7908-2656-2, In: Proc. COMPSTAT'2004 (J. Antoch, ed.), Physica Verlag/Springer, pp. 1947-1954. MR2173224DOI10.1007/978-3-7908-2656-2
- Víšek, J. Á., 10.1007/978-3-7908-1709-6, In: Proc. COMPSTAT 2006 (A. Rizzi and M. Vichi, eds.), Physica Verlag/Springer, Heidelberg 2006, pp. 777-786. MR2173224DOI10.1007/978-3-7908-1709-6
- Víšek, J. Á., Kolmogorov-Smirnov statistics in multiple regression., In: Proc. ROBUST 2006 (J. Antoch and G. Dohnal, eds.), pp. 367-374.
- Víšek, J. Á., 10.1007/s10463-007-0159-8, Ann. Inst. Statist. Math. 61 (2009), 543-578. Zbl1332.62246MR2529966DOI10.1007/s10463-007-0159-8
- Víšek, J. Á., 10.1007/s10463-007-0159-8, In: IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 2010, pp. 254-267. MR2808385DOI10.1007/s10463-007-0159-8
- Víšek, J. Á., Heteroscedasticity resistant robust covariance matrix estimator., Bull. Czech Econometric Society 17 (2010), 33-49.
- Víšek, J. Á., Consistency of the least weighted squares under heteroscedasticity., Kybernetika 47 (2011), 179-206. Zbl1228.62026MR2828572
- Víšek, J. Á., Weak - consistency of the least weighted squares under heteroscedasticity., Acta Universitatis Carolinae, Mathematica et Physica 2 (2011), 51, 71-82. Zbl1228.62026MR2808296
- Víšek, J. Á., 10.1080/02331881003768891, Statistics 45 (2011), 497-508. Zbl1229.62050MR2832181DOI10.1080/02331881003768891
- Víšek, J. Á., 10.1007/s11009-014-9432-5, Workshop on Algorithm for Outliers/regressors Selection organized by Bent Nielsen, Nuffield College, Oxford 2013. Methodology and Computing in Applied Probability 17 (2014), 4, 999-1014. DOI10.1007/s11009-014-9432-5
- Wagenvoort, R., Waldmann, R., 10.1016/s0304-4076(01)00102-6, J. Econometr. 106 (2002), 297-324. Zbl1038.62061MR1885372DOI10.1016/s0304-4076(01)00102-6
- White, H., 10.2307/1912934, Econometrica 48 (1980), 817-838. MR0575027DOI10.2307/1912934
- Wooldridge, J. M., Econometric Analysis of Cross Section and Panel Data., MIT Press, Cambridge 2001. (Second edition 2008.) Zbl1327.62009MR2768559
- Wooldridge, J. M., Introductory Econometrics. A Modern Approach., MIT Press, Cambridge 2006. (Second edition 2009.)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.