L-zero-divisor graphs of direct products of L-commutative rings
S. Ebrahimi Atani; M. Shajari Kohan
Discussiones Mathematicae - General Algebra and Applications (2011)
- Volume: 31, Issue: 2, page 159-174
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topS. Ebrahimi Atani, and M. Shajari Kohan. "L-zero-divisor graphs of direct products of L-commutative rings." Discussiones Mathematicae - General Algebra and Applications 31.2 (2011): 159-174. <http://eudml.org/doc/276609>.
@article{S2011,
abstract = {L-zero-divisor graphs of L-commutative rings have been introduced and studied in [5]. Here we consider L-zero-divisor graphs of a finite direct product of L-commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the L-ziro-divisor graph of a L-ring when extending to a finite direct product of L-commutative rings.},
author = {S. Ebrahimi Atani, M. Shajari Kohan},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {μ-zero-divisor; L-zero-divisor graph; μ-diameter; μ-girth; finite direct products; -zero-divisor; -zero-divisor graph; -diameter; -girth},
language = {eng},
number = {2},
pages = {159-174},
title = {L-zero-divisor graphs of direct products of L-commutative rings},
url = {http://eudml.org/doc/276609},
volume = {31},
year = {2011},
}
TY - JOUR
AU - S. Ebrahimi Atani
AU - M. Shajari Kohan
TI - L-zero-divisor graphs of direct products of L-commutative rings
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2011
VL - 31
IS - 2
SP - 159
EP - 174
AB - L-zero-divisor graphs of L-commutative rings have been introduced and studied in [5]. Here we consider L-zero-divisor graphs of a finite direct product of L-commutative rings. Specifically, we look at the preservation, or lack thereof, of the diameter and girth of the L-ziro-divisor graph of a L-ring when extending to a finite direct product of L-commutative rings.
LA - eng
KW - μ-zero-divisor; L-zero-divisor graph; μ-diameter; μ-girth; finite direct products; -zero-divisor; -zero-divisor graph; -diameter; -girth
UR - http://eudml.org/doc/276609
ER -
References
top- [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840 Zbl0941.05062
- [2] M. Axtell, J. Stickles and J. Warfel, Zero-divisor graphs of direct products of commutative rings, Houston J. of Math. 22 (2006), 985-994. Zbl1110.13004
- [3] D.F. Anderson, M.C. Axtell and J.A. Stickles, Zero-divisor graphs in commutative rings, in: Commutative Algebra, Noetherian and non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds), Springer-Verlag, New York, 2.11, 23-45. Zbl1225.13002
- [4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226. doi: 10.1016/0021-8693(88)90202-5
- [5] S. Ebrahimi Atani and M. Shajari Kohan, On L-ideal-based L-zero-divisor graphs, Discuss. Math. General Algebra and Applications, to appear. Zbl1255.05094
- [6] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174. Zbl0145.24404
- [7] W.J. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems, 11 (1983), 31-41. Zbl0522.06013
- [8] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0
- [9] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.
- [10] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502 Zbl1087.13500
- [11] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517. Zbl0194.05501
- [12] A. Rosenfeld, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.
- [13] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, in: Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.
- [14] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X Zbl0139.24606
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.