A compactness result for polyharmonic maps in the critical dimension
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 137-150
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZheng, Shenzhou. "A compactness result for polyharmonic maps in the critical dimension." Czechoslovak Mathematical Journal 66.1 (2016): 137-150. <http://eudml.org/doc/276757>.
@article{Zheng2016,
abstract = {For $n=2m\ge 4$, let $\Omega \in \mathbb \{R\}^n$ be a bounded smooth domain and $\{\mathcal \{N\}\subset \mathbb \{R\}^L\}$ a compact smooth Riemannian manifold without boundary. Suppose that $\lbrace u_k\rbrace \in W^\{m,2\}(\Omega ,\mathcal \{N\})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps \[ \frac\{\rm d\}\{\{\rm d\} t\}\Big |\_\{t=0\}E\_m(\Pi (u+t\xi ))=0 \]
with $\Phi _k\rightarrow 0$ in $(W^\{m,2\}(\Omega ,\mathcal \{N\}))^*$ and $u_k\rightharpoonup u$ weakly in $W^\{m,2\}(\Omega ,\mathcal \{N\})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^\{m,2\}$ topology.},
author = {Zheng, Shenzhou},
journal = {Czechoslovak Mathematical Journal},
keywords = {polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity},
language = {eng},
number = {1},
pages = {137-150},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A compactness result for polyharmonic maps in the critical dimension},
url = {http://eudml.org/doc/276757},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Zheng, Shenzhou
TI - A compactness result for polyharmonic maps in the critical dimension
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 137
EP - 150
AB - For $n=2m\ge 4$, let $\Omega \in \mathbb {R}^n$ be a bounded smooth domain and ${\mathcal {N}\subset \mathbb {R}^L}$ a compact smooth Riemannian manifold without boundary. Suppose that $\lbrace u_k\rbrace \in W^{m,2}(\Omega ,\mathcal {N})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps \[ \frac{\rm d}{{\rm d} t}\Big |_{t=0}E_m(\Pi (u+t\xi ))=0 \]
with $\Phi _k\rightarrow 0$ in $(W^{m,2}(\Omega ,\mathcal {N}))^*$ and $u_k\rightharpoonup u$ weakly in $W^{m,2}(\Omega ,\mathcal {N})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^{m,2}$ topology.
LA - eng
KW - polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity
UR - http://eudml.org/doc/276757
ER -
References
top- Angelsberg, G., Pumberger, D., 10.1007/s10455-008-9122-z, Ann. Global Anal. Geom. 35 (2009), 63-81. (2009) Zbl1172.58003MR2480664DOI10.1007/s10455-008-9122-z
- Bethuel, F., 10.1007/BF01191297, Calc. Var. Partial Differ. Equ. 1 (1993), 267-310. (1993) MR1261547DOI10.1007/BF01191297
- Freire, A., Müller, S., Struwe, M., 10.1016/S0294-1449(99)80003-1, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 725-754. (1998) MR1650966DOI10.1016/S0294-1449(99)80003-1
- Gastel, A., 10.1515/ADVGEOM.2006.031, Adv. Geom. 6 (2006), 501-521. (2006) Zbl1136.58010MR2267035DOI10.1515/ADVGEOM.2006.031
- Gastel, A., Scheven, C., 10.4310/CAG.2009.v17.n2.a2, Commun. Anal. Geom. 17 (2009), 185-226. (2009) Zbl1183.58010MR2520907DOI10.4310/CAG.2009.v17.n2.a2
- Goldstein, P., Strzelecki, A., Zatorska-Goldstein, A., 10.1016/j.anihpc.2008.10.008, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1387-1405. (2009) Zbl1188.35071MR2542730DOI10.1016/j.anihpc.2008.10.008
- Hélein, F., Regularity of weakly harmonic maps between a surface and a Riemannian manifold, C. R. Acad. Sci., Paris, Sér. (1) 312 French (1991), 591-596. (1991) MR1101039
- Lamm, T., Rivière, T., 10.1080/03605300701382381, Commun. Partial Differ. Equations 33 (2008), 245-262. (2008) Zbl1139.35328MR2398228DOI10.1080/03605300701382381
- Laurain, P., Rivière, T., 10.1515/acv-2012-0105, Adv. Calc. Var. 6 (2013), 191-216. (2013) Zbl1275.35098MR3043576DOI10.1515/acv-2012-0105
- Lions, P.-L., 10.4171/RMI/6, Rev. Mat. Iberoam. 1 (1985), 145-201. (1985) Zbl0704.49005MR0834360DOI10.4171/RMI/6
- Lions, P.-L., 10.4171/RMI/12, Rev. Mat. Iberoam. 1 (1985), 45-121. (1985) MR0850686DOI10.4171/RMI/12
- Mou, L., Wang, C., 10.1007/BF01190823, Calc. Var. Partial Differ. Equ. 4 (1996), 341-367. (1996) MR1393269DOI10.1007/BF01190823
- Rivière, T., 10.1007/s00222-006-0023-0, Invent. Math. 168 (2007), 1-22. (2007) Zbl1128.58010MR2285745DOI10.1007/s00222-006-0023-0
- Sacks, J., Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann. Math. (2) 113 (1981), 1-24. (1981) MR0604040
- Strzelecki, P., 10.1007/s00526-003-0210-4, Calc. Var. Partial Differ. Equ. 18 (2003), 401-432. (2003) Zbl1106.35021MR2020368DOI10.1007/s00526-003-0210-4
- Strzelecki, P., Zatorska-Goldstein, A., 10.1215/S0012-7094-04-12123-2, Duke Math. J. 121 (2004), 269-284. (2004) Zbl1054.58008MR2034643DOI10.1215/S0012-7094-04-12123-2
- Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1 (1998), 479-500. (1998) MR1662313
- Uhlenbeck, K. K., 10.1007/BF01947069, Commun. Math. Phys. 83 (1982), 31-42. (1982) MR0648356DOI10.1007/BF01947069
- Wang, C., 10.1016/j.anihpc.2004.10.007, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 509-519. (2005) Zbl1229.58017MR2145723DOI10.1016/j.anihpc.2004.10.007
- Zheng, S., Weak compactness of biharmonic maps, Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 190, 7 pages. (2012) Zbl1288.31012MR3001676
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.