A compactness result for polyharmonic maps in the critical dimension

Shenzhou Zheng

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 137-150
  • ISSN: 0011-4642

Abstract

top
For n = 2 m 4 , let Ω n be a bounded smooth domain and 𝒩 L a compact smooth Riemannian manifold without boundary. Suppose that { u k } W m , 2 ( Ω , 𝒩 ) is a sequence of weak solutions in the critical dimension to the perturbed m -polyharmonic maps d d t | t = 0 E m ( Π ( u + t ξ ) ) = 0 with Φ k 0 in ( W m , 2 ( Ω , 𝒩 ) ) * and u k u weakly in W m , 2 ( Ω , 𝒩 ) . Then u is an m -polyharmonic map. In particular, the space of m -polyharmonic maps is sequentially compact for the weak- W m , 2 topology.

How to cite

top

Zheng, Shenzhou. "A compactness result for polyharmonic maps in the critical dimension." Czechoslovak Mathematical Journal 66.1 (2016): 137-150. <http://eudml.org/doc/276757>.

@article{Zheng2016,
abstract = {For $n=2m\ge 4$, let $\Omega \in \mathbb \{R\}^n$ be a bounded smooth domain and $\{\mathcal \{N\}\subset \mathbb \{R\}^L\}$ a compact smooth Riemannian manifold without boundary. Suppose that $\lbrace u_k\rbrace \in W^\{m,2\}(\Omega ,\mathcal \{N\})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps \[ \frac\{\rm d\}\{\{\rm d\} t\}\Big |\_\{t=0\}E\_m(\Pi (u+t\xi ))=0 \] with $\Phi _k\rightarrow 0$ in $(W^\{m,2\}(\Omega ,\mathcal \{N\}))^*$ and $u_k\rightharpoonup u$ weakly in $W^\{m,2\}(\Omega ,\mathcal \{N\})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^\{m,2\}$ topology.},
author = {Zheng, Shenzhou},
journal = {Czechoslovak Mathematical Journal},
keywords = {polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity},
language = {eng},
number = {1},
pages = {137-150},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A compactness result for polyharmonic maps in the critical dimension},
url = {http://eudml.org/doc/276757},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Zheng, Shenzhou
TI - A compactness result for polyharmonic maps in the critical dimension
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 137
EP - 150
AB - For $n=2m\ge 4$, let $\Omega \in \mathbb {R}^n$ be a bounded smooth domain and ${\mathcal {N}\subset \mathbb {R}^L}$ a compact smooth Riemannian manifold without boundary. Suppose that $\lbrace u_k\rbrace \in W^{m,2}(\Omega ,\mathcal {N})$ is a sequence of weak solutions in the critical dimension to the perturbed $m$-polyharmonic maps \[ \frac{\rm d}{{\rm d} t}\Big |_{t=0}E_m(\Pi (u+t\xi ))=0 \] with $\Phi _k\rightarrow 0$ in $(W^{m,2}(\Omega ,\mathcal {N}))^*$ and $u_k\rightharpoonup u$ weakly in $W^{m,2}(\Omega ,\mathcal {N})$. Then $u$ is an $m$-polyharmonic map. In particular, the space of $m$-polyharmonic maps is sequentially compact for the weak-$W^{m,2}$ topology.
LA - eng
KW - polyharmonic map; compactness; Coulomb moving frame; Palais-Smale sequence; removable singularity
UR - http://eudml.org/doc/276757
ER -

References

top
  1. Angelsberg, G., Pumberger, D., 10.1007/s10455-008-9122-z, Ann. Global Anal. Geom. 35 (2009), 63-81. (2009) Zbl1172.58003MR2480664DOI10.1007/s10455-008-9122-z
  2. Bethuel, F., 10.1007/BF01191297, Calc. Var. Partial Differ. Equ. 1 (1993), 267-310. (1993) MR1261547DOI10.1007/BF01191297
  3. Freire, A., Müller, S., Struwe, M., 10.1016/S0294-1449(99)80003-1, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 725-754. (1998) MR1650966DOI10.1016/S0294-1449(99)80003-1
  4. Gastel, A., 10.1515/ADVGEOM.2006.031, Adv. Geom. 6 (2006), 501-521. (2006) Zbl1136.58010MR2267035DOI10.1515/ADVGEOM.2006.031
  5. Gastel, A., Scheven, C., 10.4310/CAG.2009.v17.n2.a2, Commun. Anal. Geom. 17 (2009), 185-226. (2009) Zbl1183.58010MR2520907DOI10.4310/CAG.2009.v17.n2.a2
  6. Goldstein, P., Strzelecki, A., Zatorska-Goldstein, A., 10.1016/j.anihpc.2008.10.008, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1387-1405. (2009) Zbl1188.35071MR2542730DOI10.1016/j.anihpc.2008.10.008
  7. Hélein, F., Regularity of weakly harmonic maps between a surface and a Riemannian manifold, C. R. Acad. Sci., Paris, Sér. (1) 312 French (1991), 591-596. (1991) MR1101039
  8. Lamm, T., Rivière, T., 10.1080/03605300701382381, Commun. Partial Differ. Equations 33 (2008), 245-262. (2008) Zbl1139.35328MR2398228DOI10.1080/03605300701382381
  9. Laurain, P., Rivière, T., 10.1515/acv-2012-0105, Adv. Calc. Var. 6 (2013), 191-216. (2013) Zbl1275.35098MR3043576DOI10.1515/acv-2012-0105
  10. Lions, P.-L., 10.4171/RMI/6, Rev. Mat. Iberoam. 1 (1985), 145-201. (1985) Zbl0704.49005MR0834360DOI10.4171/RMI/6
  11. Lions, P.-L., 10.4171/RMI/12, Rev. Mat. Iberoam. 1 (1985), 45-121. (1985) MR0850686DOI10.4171/RMI/12
  12. Mou, L., Wang, C., 10.1007/BF01190823, Calc. Var. Partial Differ. Equ. 4 (1996), 341-367. (1996) MR1393269DOI10.1007/BF01190823
  13. Rivière, T., 10.1007/s00222-006-0023-0, Invent. Math. 168 (2007), 1-22. (2007) Zbl1128.58010MR2285745DOI10.1007/s00222-006-0023-0
  14. Sacks, J., Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann. Math. (2) 113 (1981), 1-24. (1981) MR0604040
  15. Strzelecki, P., 10.1007/s00526-003-0210-4, Calc. Var. Partial Differ. Equ. 18 (2003), 401-432. (2003) Zbl1106.35021MR2020368DOI10.1007/s00526-003-0210-4
  16. Strzelecki, P., Zatorska-Goldstein, A., 10.1215/S0012-7094-04-12123-2, Duke Math. J. 121 (2004), 269-284. (2004) Zbl1054.58008MR2034643DOI10.1215/S0012-7094-04-12123-2
  17. Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1 (1998), 479-500. (1998) MR1662313
  18. Uhlenbeck, K. K., 10.1007/BF01947069, Commun. Math. Phys. 83 (1982), 31-42. (1982) MR0648356DOI10.1007/BF01947069
  19. Wang, C., 10.1016/j.anihpc.2004.10.007, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 509-519. (2005) Zbl1229.58017MR2145723DOI10.1016/j.anihpc.2004.10.007
  20. Zheng, S., Weak compactness of biharmonic maps, Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 190, 7 pages. (2012) Zbl1288.31012MR3001676

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.