Edge-colouring of graphs and hereditary graph properties
Samantha Dorfling; Tomáš Vetrík
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 87-99
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDorfling, Samantha, and Vetrík, Tomáš. "Edge-colouring of graphs and hereditary graph properties." Czechoslovak Mathematical Journal 66.1 (2016): 87-99. <http://eudml.org/doc/276772>.
@article{Dorfling2016,
abstract = {Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph $G$, a hereditary graph property $\{\mathcal \{P\}\}$ and $l \ge 1$ we define $\chi ^\{\prime \}_\{\{\mathcal \{P\}\},l\}(G)$ to be the minimum number of colours needed to properly colour the edges of $G$, such that any subgraph of $G$ induced by edges coloured by (at most) $l$ colours is in $\{\mathcal \{P\}\}$. We present a necessary and sufficient condition for the existence of $\chi ^\{\prime \}_\{\{\mathcal \{P\}\},l\}(G)$. We focus on edge-colourings of graphs with respect to the hereditary properties $\{\mathcal \{O\}\}_k$ and $\{\mathcal \{S\}\}_k$, where $\{\mathcal \{O\}\}_k$ contains all graphs whose components have order at most $k+1$, and $\{\mathcal \{S\}\}_k$ contains all graphs of maximum degree at most $k$. We determine the value of $\chi ^\{\prime \}_\{\{\mathcal \{S\}\}_k,l\}(G)$ for any graph $G$, $k \ge 1$, $l \ge 1$, and we present a number of results on $\chi ^\{\prime \}_\{\{\mathcal \{O\}\}_k,l\}(G)$.},
author = {Dorfling, Samantha, Vetrík, Tomáš},
journal = {Czechoslovak Mathematical Journal},
keywords = {edge-colouring; proper colouring; hereditary graph property},
language = {eng},
number = {1},
pages = {87-99},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Edge-colouring of graphs and hereditary graph properties},
url = {http://eudml.org/doc/276772},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Dorfling, Samantha
AU - Vetrík, Tomáš
TI - Edge-colouring of graphs and hereditary graph properties
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 87
EP - 99
AB - Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph $G$, a hereditary graph property ${\mathcal {P}}$ and $l \ge 1$ we define $\chi ^{\prime }_{{\mathcal {P}},l}(G)$ to be the minimum number of colours needed to properly colour the edges of $G$, such that any subgraph of $G$ induced by edges coloured by (at most) $l$ colours is in ${\mathcal {P}}$. We present a necessary and sufficient condition for the existence of $\chi ^{\prime }_{{\mathcal {P}},l}(G)$. We focus on edge-colourings of graphs with respect to the hereditary properties ${\mathcal {O}}_k$ and ${\mathcal {S}}_k$, where ${\mathcal {O}}_k$ contains all graphs whose components have order at most $k+1$, and ${\mathcal {S}}_k$ contains all graphs of maximum degree at most $k$. We determine the value of $\chi ^{\prime }_{{\mathcal {S}}_k,l}(G)$ for any graph $G$, $k \ge 1$, $l \ge 1$, and we present a number of results on $\chi ^{\prime }_{{\mathcal {O}}_k,l}(G)$.
LA - eng
KW - edge-colouring; proper colouring; hereditary graph property
UR - http://eudml.org/doc/276772
ER -
References
top- Basavaraju, M., Chandran, L. S., 10.1016/j.disc.2009.01.014, Discrete Math. 309 (2009), 4646-4648. (2009) Zbl1192.05044MR2519206DOI10.1016/j.disc.2009.01.014
- Borowiecki, M., Broere, I., Frick, M., Mihók, P., Semanišin, G., 10.7151/dmgt.1037, Discuss. Math., Graph Theory 17 (1997), 5-50. (1997) MR1633268DOI10.7151/dmgt.1037
- Czap, J., Mihók, P., 10.7151/dmgt.1685, Discuss. Math., Graph Theory 33 (2013), 509-519. (2013) MR3078888DOI10.7151/dmgt.1685
- Dorfling, M. J., Dorfling, S., 10.7151/dmgt.1180, Discuss. Math., Graph Theory 22 (2002), 349-359. (2002) Zbl1030.05039MR1961213DOI10.7151/dmgt.1180
- Erd{ő}s, P., Wilson, R. J., 10.1016/0095-8956(77)90039-9, J. Comb. Theory, Ser. B 23 (1977), 255-257. (1977) MR0463022DOI10.1016/0095-8956(77)90039-9
- Fiedorowicz, A., Ha{ł}uszczak, M., Narayanan, N., 10.1016/j.ipl.2008.07.016, Inf. Process. Lett. 108 (2008), 412-417. (2008) Zbl1189.05060MR2458434DOI10.1016/j.ipl.2008.07.016
- Fouquet, J.-L., Jolivet, J.-L., Strong edge-colorings of graphs and applications to multi--gons, Ars Comb. 16-A (1983), 141-150. (1983) MR0737086
- Ha{ł}uszczak, M., Vateha, P., 10.7151/dmgt.1097, Discuss. Math., Graph Theory 19 (1999), 229-236. (1999) MR1768303DOI10.7151/dmgt.1097
- Hou, J., Wang, W., Zhang, X., Acyclic edge coloring of planar graphs with girth at least 5, Discrete Appl. Math. 161 (2013), 2958-2967. (2013) Zbl1287.05045MR3126663
- K{ö}nig, D., 10.1007/BF01456961, Math. Ann. 77 German (1916), 453-465. (1916) MR1511872DOI10.1007/BF01456961
- Muthu, R., Narayanan, N., Subramanian, C. R., 10.7151/dmgt.1456, Discuss. Math., Graph Theory 29 (2009), 411-418. (2009) Zbl1194.05042MR2574479DOI10.7151/dmgt.1456
- Vizing, V. G., On an estimate of the chromatic class of a -graph, Diskret. Analiz No. 3 (1964), 25-30. (1964) MR0180505
- Yang, F., Chen, X.-E., Ma, C., 10.1016/j.ipl.2013.11.001, Inf. Process. Lett. 114 (2014), 217-221. (2014) Zbl1296.05081MR3146289DOI10.1016/j.ipl.2013.11.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.