Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Edge-colouring of graphs and hereditary graph properties

Samantha DorflingTomáš Vetrík — 2016

Czechoslovak Mathematical Journal

Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph G , a hereditary graph property 𝒫 and l 1 we define χ 𝒫 , l ' ( G ) to be the minimum number of colours needed to properly colour the edges of G , such that any subgraph of G induced by edges coloured by (at most) l colours is in 𝒫 . We present a necessary and sufficient condition for the existence of χ 𝒫 , l ' ( G ) . We focus on edge-colourings of graphs with respect to the hereditary properties...

Generalized edge-chromatic numbers and additive hereditary properties of graphs

Michael J. DorflingSamantha Dorfling — 2002

Discussiones Mathematicae Graph Theory

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be hereditary properties of graphs. The generalized edge-chromatic number ρ ' ( ) is defined as the least integer n such that ⊆ n. We investigate the generalized edge-chromatic numbers of the properties → H, ₖ, ₖ, *ₖ, ₖ and ₖ.

Generalized chromatic numbers and additive hereditary properties of graphs

Izak BroereSamantha DorflingElizabeth Jonck — 2002

Discussiones Mathematicae Graph Theory

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be additive hereditary properties of graphs. The generalized chromatic number χ ( ) is defined as follows: χ ( ) = n iff ⊆ ⁿ but n - 1 . We investigate the generalized chromatic numbers of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ and ₖ.

Recognizable colorings of cycles and trees

Michael J. DorflingSamantha Dorfling — 2012

Discussiones Mathematicae Graph Theory

For a graph G and a vertex-coloring c:V(G) → 1,2, ...,k, the color code of a vertex v is the (k+1)-tuple (a₀,a₁, ...,aₖ), where a₀ = c(v), and for 1 ≤ i ≤ k, a i is the number of neighbors of v colored i. A recognizable coloring is a coloring such that distinct vertices have distinct color codes. The recognition number of a graph is the minimum k for which G has a recognizable k-coloring. In this paper we prove three conjectures of Chartrand et al. in [8] regarding the recognition number of cycles...

Page 1

Download Results (CSV)